- Дистанционная защита линий
- Дистанционная защита линий, принцип работы, ступени, формула
- Принцип действия защиты
- Уставка первой зоны ДЗ
- Вторая зона ДЗ
- Третья зона ДЗ
- Устройство и работа комплекта дистанционной защиты.
- Пусковые органы ДЗ
- Дистанционные органы.
- Реле направления мощности
- Органы блокировок
- Применение дистанционной защиты
- Дистанционная защита ЛЭП, назначение, принцип действия и область применения. Принцип выбора уставок действия защиты.
Дистанционная защита линий
Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут быть использованы более простые максимальные токовые и направленные токовые защиты.
Дистанционной защитой определяется сопротивление или расстояние (дистанция) до места КЗ, и в зависимости от этого она срабатывает с меньшей или большей выдержкой времени. Дистанционная защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80—85 % длины защищаемой линии, время срабатывания защиты не более 0,15 с.
Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4—0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается, как и для направленных токовых защит.
Дистанционная защита — сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию.
На рис. 1 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
Пусковой орган П выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток IР и напряжение UР на зажимах реле.
Рис. 1. Упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени
Дистанционные (или измерительные) органы Д1 и Д2 устанавливают меру удаленности места КЗ. Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
где Zp — сопротивление на зажимах реле; Z — сопротивление защищаемой линии длиной 1 км; L — длина участка линии до места КЗ, км; Zcp — сопротивление срабатывания реле.
Из приведенного соотношения видно, что сопротивление на зажимах реле Zp пропорционально расстоянию L до места КЗ.
Органы выдержки времени РВ2 и РВЗ создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления Н разрешает работу защиты при направлении тока КЗ от шин в линию.
В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то и Zp=0. Это означает, что и пусковой и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия.
Работа дистанционной защиты линий.
При КЗ на линии срабатывают реле пускового органа П и реле органа направления Н. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны РВ3, приведя его в действие. Если КЗ находится в первой зоне, дистанционной орган Д1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени.
При КЗ во второй зоне Д1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны Д2 который запустит реле времени РВ2. По истечении выдержки времени второй зоны от реле РВ2 поступит импульс на отключение линии.
Если КЗ произойдет в третьей зоне, дистанционные органы Д1 и Д2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени РВ3, запущенное в момент возникновения КЗ контактами реле Н, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Дистанционная защита линий, принцип работы, ступени, формула
Для защиты тупиковых кабельных или воздушных линий с односторонним питанием достаточно максимально-токовой защиты или токовой отсечки. Но, если эти линии подключены последовательно друг за другом или соединяют между собой несколько источников питания, невозможно выполнить такие защиты селективными.
Представим, что от шин подстанции №1 отходит линия, питающая другую подстанцию — №2. А с шин этой следующей подстанции уходит еще одна линия.
При использовании МТЗ на подстанции №1 она должна срабатывать при КЗ на первой линии, но давать возможность подействовать защите подстанции №2 при КЗ на следующей.
Но при этом она должна еще и резервировать защиту второй подстанции, для чего должна подействовать и при КЗ на линии 2. Для этого время действия защит нужно установить так, чтобы на первой подстанции выдержка была больше. К тому же придется разделить логику работы МТЗ на две или более ступеней, выставив для первой из них ток срабатывания, равный расчетному току КЗ в конце первой линии.
А теперь предположим, что с противоположной стороны линию №2 питает еще один источник энергии, не зависимый от первого. Теперь задача усложняется: токи короткого замыкания изменяются. К тому же МТЗ линий потребуется выполнить направленными.
Есть еще один вид защит, который может помочь эффективно отключить именно линию с повреждением – дифференциальная защита. Но для ЛЭП большой протяженности ее выполнить очень непросто.
При использовании же МТЗ и токовых отсечек устройства защиты получаются сложными, к тому же – недостаточно эффективными. Выход из ситуации – применение дистанционных защит.
Принцип действия защиты
Дистанционная защита (ДЗ) – название, говорящее о том, что она реагирует на расстояние до точки короткого замыкания. А если говорить точнее: логика ее работы зависит от места расположения точки замыкания, которое и определяет защита.
Делает она это с помощью устройств, называемых реле сопротивления.
Их задача: косвенным образом измерить сопротивление от места расположения защиты до точки короткого замыкания. А для этого, по закону Ома, ей требуются не только ток, но и напряжение, получаемое от установленного на шинах подстанции трансформатора напряжения.
Реле сопротивления срабатывает при условии:
Здесь Zуст – уставка сопротивления срабатывания реле. Измеряемая величина является фиктивной, так как в некоторых режимах работы (например, при качаниях) ее физический смысл, как сопротивления, теряется.
Уставок срабатывания, а, следовательно, и реле сопротивления у ДЗ, как правило, не менее трех.
Защищаемая область делится на участки, называемые зонами. Время срабатывания для каждой из зон свое. А уставка реле сопротивления равна сопротивлению до точки КЗ в конце соответствующей зоны. Для пояснения вспомним пример с подстанциями и линиями.
Уставка первой зоны ДЗ
Рассчитывается так, чтобы она защищала только свою отходящую линию. Но не до самого конца, а с учетом погрешности измерения сопротивления – 0,7-0,85 ее длины. При срабатывании первой зоны ДЗ линия отключается с минимально возможной выдержкой времени, так как КЗ находится гарантированно на ней.
Вторая зона ДЗ
Резервирует отказ защиты следующей подстанции. Для чего она реагирует на КЗ в конце линии №2. И первая зона ДЗ для выключателя второй линии от подстанции №2 выставлена на сопротивление до той же самой точки КЗ, но уже от шин этой подстанции. Но выдержка времени 2 зоны ДЗ подстанции №1 больше, чем 1 зоны ДЗ подстанции №2.
Этим обеспечивается требуемая селективность: выключатель второй линии от подстанции №2 отключится раньше, чем отработает реле времени защиты на подстанции №1.
Третья зона ДЗ
Необходима для резервирования защиты следующей линии, если она есть в наличии. Дополнительного количества зон не предусматривается.
Интересное видео о настройке дистанционной защиты смотрите ниже:
Устройство и работа комплекта дистанционной защиты.
Тем не менее, на одних реле сопротивления и реле времени такую защиту не выполнить. На практике она включает в себя несколько функциональных блоков.
Пусковые органы ДЗ
Это токовые реле или реле полного сопротивления. Их задача: определить наличие КЗ в защищаемой цепи и запустить работу остальных устройств защиты.
Дистанционные органы.
Набор реле сопротивления для определения зоны срабатывания и дистанции до места КЗ. Устройство, формирующее выдержки времени для зон защиты. Это – обычные реле времени.
Реле направления мощности
На самом деле он применяется редко, так как реле сопротивления конструктивно обладают собственной диаграммой направленности, не позволяющей срабатывать защите при КЗ «за спиной». В итоге исключается срабатывание защиты при замыканиях в направлении, противоположном защищаемой линии.
Органы блокировок
Одно из которых — защита от исчезновения напряжения. При неисправностях цепей ТН ДЗ выводится из действия. Следующая блокировка работает при качаниях в системе. При их возникновении обычно происходит снижение напряжения на шинах и увеличение тока в защищаемых линиях. Эти изменения воспринимаются дистанционными органами защиты как уменьшение сопротивления, из-за чего также не исключена ложная работа защиты.
Применение дистанционной защиты
Дистанционная защита используется в сетях с питанием от двух и более источников.
Это линии связи напряжением 35, 110 кВ и выше, по которым осуществляется транзит электроэнергии.
Особенно эффективна и незаменима ДЗ в кольцевых схемах энергоснабжения, применение которых очень часто для единой энергетической системы страны.
Для всех сетей, где установлена ДЗ, она является основной защитой.
Конструкция ДЗ на электромеханической базе предполагает наличие большого количества элементов: обычных реле, трансформаторов. Для ее размещения выделяется целая панель. Современные же варианты микропроцессорных защит умещаются в одном терминале, соседствуя с другими их видами, а также – возможностью фиксирования срабатываний защит, работы блокировок, запись осциллограмм аварийных процессов. Совмещением нескольких устройств в одном терминале обеспечивается не только компактность, но и удобство в эксплуатации релейной защиты линии.
Ещё одно интересное короткое видео об анализе работы дистанционной защиты:
Источник
Дистанционная защита ЛЭП, назначение, принцип действия и область применения. Принцип выбора уставок действия защиты.
Ответ: Назначение и принцип действия дистанционных защит (ДЗ). В сетях сложной конфигурации с несколькими источниками питания простые и направленные МТЗ не могут обеспечить селективного отключения КЗ. Так, при КЗ на W2 (рис. 6.1) АК3 должна подействовать быстрее АК1, а при КЗ на W1 – наоборот, АК1 должна подействовать быстрее АК3. Эти противоречивые требования не могут быть выполнены с помощью МТНЗ. Кроме того, МТНЗ часто не удовлетворяет требованиям быстродействия и чувствительности.
Рис. 6.1. Кольцевая сеть с двумя источниками питания:
– максимальная токовая направленная защита; – дистанционная защита
ДЗ – это сложные направленные или ненаправленные защиты с относительной селективностью, выполненные с использованием минимальных реле сопротивления. Дистанционные защиты реагируют на сопротивление линии до места КЗ, которое пропорционально расстоянию, т. е. дистанции. Отсюда и происходит название ДЗ. Для работы ДЗ необходимо наличие цепей тока от ТТ присоединения и цепей напряжения от ТН. При отсутствии или неисправности цепей напряжения возможна ложная работа ДЗ, например, при КЗ на смежных участках.
Селективное отключение КЗ в сложных кольцевых сетях может быть обеспечено с помощью ДЗ.
Выдержка времени ДЗ t зависит от расстояния (дистанции)
(рис. 6.2) между местом установки РЗ (точка ПС1) и точкой КЗ (К),т. е. нарастает с увеличением этого расстояния. Дистанционная защита, расположенная ближе к месту повреждения, имеет меньшую выдержку времени, чем более удаленные ДЗ.
Например, при КЗ в точке К1 ДЗ2, расположенная ближе к месту повреждения, работает с меньшей выдержкой времени, чем более удаленная дистанционная защита ДЗ1.
Если КЗ возникает и в точке К2,то время действия ДЗ2 увеличивается и КЗ селективно отключается ближайшей к месту повреждения ДЗ3.
Основным элементом ДЗ является дистанционный измерительный орган (ДО), который определяет удаленность точки КЗ от места установки РЗ. В качестве ДО используется реле сопротивления (PC), реагирующие на полное, реактивное или активное сопротивление поврежденного участка ЛЭП Сопротивление фазы ЛЭП от места установки реле ДЗ1 (см. рис. 6.2)до места КЗ (точки К) пропорционально длине этого участка
Рис. 6.2. Зависимость выдержки времени ДЗ от расстояния до места КЗ
Таким образом, поведение ДО, реагирующего на сопротивление линии, зависит от расстояния до места повреждения. В зависимости от вида сопротивления, на которое реагирует ДО (Z, X или R), ДЗ подразделяются на РЗ полного, реактивного и активного сопротивлений. Реле сопротивления, применяемые в ДЗ для определения сопротивления до точки КЗ, контролируют напряжение и ток в месте установки ДЗ (рис. 6.3). К зажимам PC (КZ) подводятся вторичные значения Up и Iр от ТН и ТТ. Реле выполняется так, чтобы его поведение зависело от отношения Up к Iр. Это отношение является некоторым сопротивлением При КЗ
и при определенных значениях
PC срабатывает, так как оно реагирует на уменьшение
поскольку при КЗ Up уменьшается, а Iр возрастает. Наибольшее значение, при котором PC срабатывает, называется сопротивлением
срабатывания реле:
(6.1)
Рис. 6.3. Подключение цепей тока и напряжения реле сопротивления
Для обеспечения селективности в сетях сложной конфигурации на ЛЭП с двухсторонним питанием ДЗ необходимо выполнять направленными, действующими при направлении мощности КЗ от шин в линию. Направленность действия ДЗ обеспечивается при помощи дополнительных реле направления мощности или применением направленных реле сопротивления, способных реагировать на величину сопротивления и на направление мощности КЗ.
Характеристики выдержки времени дистанционных защит. Зависимость времени действия ДЗ от расстояния или сопротивления до места КЗ называется характеристикой выдержек времени ДЗ.По характеру этой зависимости ДЗ делятся на три группы: с нарастающими (наклонными) характеристиками времени действия, ступенчатыми и комбинированными характеристиками (рис. 6.4).
Рис. 6.4. Характеристики зависимости времени срабатывания ДЗ :
а – наклонная; б – ступенчатая; в – комбинированная
Ступенчатые ДЗ действуют быстрее, чем ДЗ с наклонной и комбинированной характеристиками, и выполняются проще в конструктивном исполнении. Дистанционные защиты со ступенчатой характеристикой производства ЧЭАЗ выполняются с тремя ступенями времени, соответствующими трем зонам действия ДЗ (рис. 6.4, б). Микропроцессорные реле имеют 4–6 ступеней времени. Реле с наклонной характеристикой разработаны для распределительных сетей 6–10 кВ.
Принципы обеспечения селективности дистанционными защитами. На ЛЭП с двухсторонним питанием ДЗ устанавливаются с обеих сторон каждой ЛЭП и должны срабатывать при направлении мощности от шин в линию. Дистанционные релейные защиты, действующие при одном направлении мощности, необходимо согласовать между собой по времени и по зоне действия так, чтобы обеспечивалось селективное отключение КЗ. В рассматриваемой схеме (рис. 6.5) согласуются между собой ДЗ1, ДЗ3, ДЗ5 и ДЗ6, ДЗ4, ДЗ2.
Рис. 6.5. Согласование выдержек времени дистанционных РЗ
со ступенчатой характеристикой: Δz – погрешность дистанционного реле;
Δt – ступень селективности
Учитывая, что первые ступени ДЗ не имеют выдержки времени ( ), по условию селективности они не должны действовать при КЗ за пределами защищаемой ЛЭП. Исходя из этого, протяженность первой ступени, не имеющей выдержки времени (
), выбирается меньше протяженности защищаемой ЛЭП и обычно составляет 0,8–0,9 длины линии. Остальная часть защищаемой ЛЭП и шины противоположной подстанции охватываются второй ступенью ДЗ. Протяженность и выдержка времени второй ступени согласуются обычно с протяженностью и выдержкой времени первой ступени ДЗ следующего участка. Например, у второй ступени ДЗ1 сопротивление срабатывания отстраивается от конца первой ступени ДЗ3, т. е.
, а время действия выбирается на ступень ∆t больше
т. е.
Последняя третья ступень ДЗ является резервной и ее протяженность выбирается из условия охвата следующего участка на случай отказа его РЗ или выключателя. Выдержка времени принимается на ∆t больше времени действия второй зоны ДЗ следующего участка. При этом зона действия третьей ступени должна быть отстроена от конца второй или третьей зоны следующего участка.
Защита линии с использованием дистанционной защиты. Дистанционная защита применяется для действия при междуфазных КЗ, а для действия при однофазных КЗ используется более простая ступенчатая токовая направленная защита нулевой последовательности (МТЗНП). Большинство микропроцессорной аппаратуры имеет ДЗ, действующую при всех видах повреждения, в том числе и при КЗ на землю. Реле сопротивления включается через ТН и ТТ на первичные напряжения в начале защищаемой ЛЭП. Вторичное напряжение на зажимах реле сопротивления PC: а вторичный ток
Сопротивление на входных зажимах реле определяется по выражению
(6.2)
где Zр.п – первичное значение сопротивления, подведенного к зажимам реле.
(6.3)
называется сопротивлением срабатывания ДЗ.
Кроме пусковых органов в состав ДЗ входят органы выдержки времени, а также ряд блокировок, предотвращающих неправильную работу защиты в режимах, при которых защита может сработать при отсутствии повреждения на защищаемой ЛЭП. К таким режимам относятся качания в энергосистеме и повреждения в цепях ТН, питающих ДЗ.
Выбор параметров срабатывания дистанционных защит. Выбор параметров срабатывания ДЗ произведем на примере сети (рис. 6.6), состоящей из двух линий W1 и W2 с тремя источниками питания и понижающим трансформатором Т. Все защиты выполняются с использованием направленных реле сопротивления с характеристикой в виде окружности, проходящей через начало координат (рис. 6.6, б). Выбор параметров срабатывания в примере производится для защит одного направления – ДЗ1, ДЗ3, ДЗ6.
Для иллюстрации выбора параметров срабатывания ДЗ на комплексной плоскости сопротивлений нанесены сопротивления линий с и приведены выбранные ниже сопротивления срабатывания (рис. 6.6, б).
Первая ступень выполняется без выдержки времени. Селективность в режиме без КЗ и при внешних КЗ обеспечивается выбором сопротивления срабатывания. Время срабатывания первых ступеней защит для всех участков принимается одинаковым и равным Для отстройки от работы разрядников, создающих кратковременное КЗ, вводится замедление
с. Для исключения излишних отключений линии сопротивление срабатывания РС должно быть выбрано меньше, чем сопротивление
при КЗ в начале предыдущих элементов, т. е. меньше сопротивления линии:
(6.4)
где – коэффициент отстройки, принимаемый 0,65–0,9 (
меньше единицы, так как используются минимальные реле сопротивления) и учитывающий положительную погрешность РС (увеличение
), погрешности измерительных трансформаторов и влияние переходного сопротивления в месте КЗ.
Вторая ступень предназначена для защиты части участка, где не работает первая ступень, когда . Селективность без КЗ и при внешних КЗ обеспечивается выбором времени срабатывания (выдержки времени)
и сопротивления срабатывания
.
Время срабатывания для вторых ступеней выбирается одинаковое, но на ступень
сбольшим временемсрабатывания первых ступеней или быстродействующих защит (например, дифференциальной) предыдущих элементов, чем обеспечивается несрабатывание вторых ступеней в зоне действия этих защит. Выбор сопротивления
производится в пределах группы защит, действующих в одном направлении. При выбранных выдержках времени можно разрешить срабатывать измерительному органу второй ступени защиты
при КЗ на части W2(или в трансформаторе Т), где еще работает первая ступень защиты 3 (или быстродействующая защита Т) – выключатель 3 будет отключен своей первой ступенью (или выключатель 5 – защитой Т), прежде чем наберет выдержку времени орган выдержки времени второй ступени дистанционной защиты.
Следовательно, сопротивление срабатывания второй ступени ДЗ должно быть выбрано меньше, чем сопротивление
при КЗ в конце зоны, защищаемой первой ступенью защиты предыдущего элемента, определяемой
, или при КЗ за трансформатором в режиме, когда его сопротивление минимально
Первичное сопротивление на входе
при КЗ в указанных точках определяется:
(6.5)
где
– коэффициенты токораспределения при КЗ на W2и за трансформатором Т.
Для сети (рис. 6.6, а) значения этих коэффициентов меньше единицы, что увеличивает значение , повышая чувствительность ступени. В сети (рис. 6.6, в) для защиты ДЗ1 при КЗ на параллельных линиях значение
больше единицы, что снижает сопротивление
и коэффициент чувствительности.
С учетом выражений (6.5) можно найти:
(6.6)
где – коэффициент отстройки, учитывающий отрицательные погрешности
Принимается меньшее значение
, полученное по выражениям (6.6).
Рис. 6.6. Схема сети и выдержки времени ДЗ (а), сопротивления срабатывания отдельных ступеней (б), схема к определению КТ (в), изменение Zз при КЗ (г)
Целесообразность использования рассчитанной ступени оценивается коэффициентом чувствительности при КЗ в конце защищаемой линии:
(6.7)
При недостаточном значении коэффициента чувствительности, если определяющим при выборе явилось условие (6.6), вторая ступень защиты 1 может быть отстроена от второй (но не от первой) ступени защиты 3 по времени (т. е. вторые ступени отдельных защит будут иметь разные выдержки времени) и сопротивлению срабатывания, а также с учетом выражения (6.6):
(6.8)
(6.9)
Принимается меньшее значение , полученное из выражений (6.6) и (6.9).
Аналогично определяются параметры срабатывания защит другого направления – ДЗ3 и ДЗ4.
Третья ступень выполняет функции резервирования. Селективность без КЗ обеспечивается сопротивлением срабатывания, а при внешних КЗ – выдержкой времени. Выбор выдержек времени, как и для МТНЗ, осуществляется по встречно-ступенчатому принципу. Выбор сопротивления срабатывания производится с учетом следующих двух условий:
1. Для исключения срабатывания реле сопротивления в нагрузочных режимах его сопротивление срабатывания должно быть меньше минимального рабочего сопротивления при :
(6.10)
где
2. Измерительный орган третьей ступени, сработавший при КЗ на смежном участке, должен вернуться в исходное положение после отключения КЗ выключателем поврежденного участка. Диаграмма изменения сопротивления в этих режимах для защиты ДЗ1 приведена на рис. 6.6, г.
При возникновении КЗ на W2 сопротивление на входе ИО снижается от значения до значения
, а после отключения выключателя Q3 – до
– переходного сопротивления, обусловленного пониженным напряжением при появлении токов самозапуска электродвигателей и определяемого как
, где
– коэффициент самозапуска.
Для возврата РС в исходное положение его сопротивление возврата при
должно быть меньше переходного сопротивления
При определении коэффициента чувствительности учитывается при
Коэффициент чувствительности третьей ступени проверяется при КЗ в конце своего участка (работа защиты как основной):
(6.11)
и в конце зоны резервирования – в конце линии W2 и за трансформатором Т
(6.12)
Аналогично выражениям (6.6) и (6.9) при КЗ в конце линии W2:
(6.13)
а при КЗ за трансформатором Т:
(6.14)
При наличии нескольких источников питания разной мощности минимальные значения коэффициентов токораспределения оказываются намного меньше единицы, а значительными, что может привести к недостаточным коэффициентам чувствительности. Для получения удовлетворительной чувствительности третьей ступени в зоне резервирования необходимо иметь небольшие значения
при
и большие
при
. Эти соотношения определяются характеристикой срабатывания РС.
Устройство блокировки при качаниях (УБК) блокирует неправильную работу ДЗ при качаниях в электроэнергетической системе. При качаниях ДЗ измеряет расстояние от места установки до электрического центра качаний, и если этот центр качаний находится на защищаемой линии, то ИО защиты срабатывает (рис. 6.7).
Рис. 6.7. Расположение электрического центра качаний на защищаемой линии
На рис. 6.7 показано изменение напряжения вдоль линии при качаниях. В момент, показанный на рис. 6.7, ЭДС по концам линии связи находятся в противофазе, а в электрическом центре (ЭЦК), который находится на линии напряжение равно 0. Дистанционный орган защиты воспринимает центр качаний как место КЗ и срабатывает. Пунктиром показан момент, когда ЭДС находится в фазе с
В данный момент напряжения во всех точках линии примерно одинаковы и ДО возвращается. Таким образом, при качаниях ДЗ то срабатывает, то возвращается. Если времени, пока ДО находится в сработанном состоянии, достаточно для срабатывания защиты, защита может отключить линию, так как успевает сработать перваяступень защиты и может сработать вторая, если время ее срабатывания менее 1,0–1,5 с. Поэтому УБК, как правило, блокирует первую ступень, а в тех случаях, когда время действия второй ступени мало (менее 1с), то блокируется и вторая ступень.
Распространены два принципа блокировки от качаний. В электромеханических защитах блокируемые ступени защиты нормально выведены из работы и вводятся при появлении кратковременной несимметрии, которой сопровождается любое, даже трехфазное, КЗ. Ступени вводятся на время, достаточное для срабатывания ДО (обычно на 0,3–0,4 с), после чего они из работы выводятся. При качаниях ДО срабатывают через некоторое время, после того как разойдутся векторы напряжения по концам ЛЭП. К данному моменту защита из работы оказывается уже выведенной.
В аналоговых защитах более поздних выпусков (ШДЭ-2602, ПДЭ-2003), а также в микропроцессорных защитах применяется блокировка по скорости изменения сопротивления. Для блокировки измеряется время между срабатываниями ДО с разными уставками. При КЗ они срабатывают одновременно, а при качаниях срабатывает сначала более чувствительное реле сопротивления, а затем через некоторое время – более грубое. Наличие времени между срабатываниями двух ДО является признаком качаний, при которых соответствующие ступени выводятся из работы.
Дата добавления: 2017-02-20 ; просмотров: 7205 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник