Возврат первой ступени ракеты falcon

SpaceX в сотый раз запустила ракету Falcon 9 и в седьмой раз вернула на Землю одну и ту же ступень ракеты (ВИДЕО)

Американская космическая компания SpaceX в ночь на 25 ноября запустила ракету-носитель Falcon 9, которая вывела на орбиту 60 спутников разрабатываемой SpaceX системы глобального доступа к интернету Starlink. Трансляция миссии велась на YouTube-канале компании. Этот запуск стал 16-м по счету в рамках проекта Starlink и сотым для ракеты Falcon 9 (а также вторым для SpaceX за четыре дня).

Ракета-носитель со спутниками была запущена со стартового комплекса SLC-40 базы ВВС США, расположенной на мысе Канаверал, в 5 часов 13 минут по московскому времени. Отделение первой ступени (многоразовый разгонный блок использовался в седьмой раз) прошло штатно, и через восемь с небольшим минут ступень совершила посадку на плавучую платформу в Атлантическом океане. Это первый по счету разгонный блок Falcon 9, совершивший по семь взлетов и посадок. Также в этой миссии SpaceX повторно использовала обе половинки носового обтекателя ракеты.

Falcon 9’s first stage lands on the Of Course I Still Love You droneship! pic.twitter.com/RZGbgzDBwf

Примерно через 15 минут после запуска ракеты все спутники были одновременно выведены на орбиту. По плану SpaceX после проверки систем спутники Starlink должны подняться на рабочую орбиту высотой 550 километров при помощи собственных двигателей.

Читайте также:  Рифленая сетка для лестницы

Напомним, ранее SpaceX получила разрешение Федеральной комиссии по связи США (FCC) вывести на орбиту почти 12 тыс. спутников системы Starlink. Предполагается, что спутники будут находиться на низких орбитах и смогут обеспечить доступ к интернету по всей планете. В 2018 году SpaceX вывела на орбиту два тестовых спутника Starlink, а первую партию из 60 спутников первой версии компания запустила в мае 2019 года (существенная часть этих аппаратов была сведена с орбиты).

В компании отмечали, что для минимального покрытия поверхности Земли сигналом системы Starlink потребуется запустить 420 спутников, а для среднего покрытия SpaceX нужно вывести на орбиту в общей сложности 780 аппаратов. В общей сложности компания запустила уже 953 спутника Starlink (49 аппаратов были сведены с орбиты).

В начале сентября в SpaceX обнародовали результаты тестирования системы. В компании сообщили, что спутники обеспечивают загрузку данных со скоростью свыше 100 Мбит/с, а малая задержка соединения позволяет играть в самые продвинутые онлайн-игры. В октябре компания начала бета-тестирование системы в Канаде и северных регионов США, и первые участники программы, получившей название «Лучше, чем ничего», высоко оценили качество и скорость интернета Starlink.

Разработкой аналогичных систем спутникового интернета занимаются и другие компании. Так, похожую систему разрабатывала подавшая заявление о банкротстве компания OneWeb, которая успела вывести на орбиту 74 спутника системы (реализация проекта будет продолжена благодаря новым владельцам). Кроме того, в апреле 2019 года о намерении создать систему под названием Kuiper объявила компания Amazon. Недавно Amazon получила разрешение FCC запустить 3,2 тыс. спутников Kuiper.

История Falcon 9

Впервые ракета-носитель Falcon 9 была запущена 4 июня 2010 года — тогда она вывела на орбиту макет полезной нагрузки. С тех пор ракета пережила несколько крупных модернизаций, заметно улучивших ее грузоподъемность. Сочетание характеристик, позволяющих выводить на геопереходную орбиту грузы массой свыше 8 тонн, и сравнительно низкой цены запуска позволили SpaceX за несколько лет занять существенную долю рынка коммерческих запусков, потеснив Роскосмос и Европейское космическое агентство.

Из всех запусков Falcon 9 лишь один оказался неудачным (в 2015 году ракета с грузовым кораблем Dragon разрушилась через 2,5 минуты после запуска), а еще один был признан успешным лишь частично. Кроме того, одна из ракет Falcon 9 взорвалась на стартовой площадке в 2016 году — из-за той аварии SpaceX приостановила запуски на четыре месяца.

В 2013 году компания, основанная предпринимателем Илоном Маском начала предпринимать попытки вернуть на Землю первую ступень ракеты Falcon 9 после запуска. Впервые посадить ступень удалось в декабре 2015 года. С тех пор SpaceX много раз возвращала ступени своих ракет, а затем повторно использовала их для новых запусков Falcon 9, а также сверхтяжелой ракеты-носителя Falcon Heavy, в которой блоки первой ступени Falcon 9 используются в качестве боковых ускорителей. В перспективе SpaceX рассчитывает использовать каждую первую ступень Falcon 9 по 10 раз. Очередной успех приближает компанию к этой цели.

Повторное использование ступеней, равно как и повторное использование головных обтекателей Falcon 9 позволяет существенно удешевить запуски ракет, но конкретных цифр в компании пока не приводят.

Источник

Эксперт: повторный пуск первой ступени Falcon 9 нельзя назвать революцией

МОСКВА, 31 мар — РИА Новости. Первый повторный пуск с успешным возвращением первой ступени ракеты Falcon 9, безусловно, является значительным достижением, однако революцией его назвать трудно, считает член-корреспондент Российской академии космонавтики имени Циолковского Андрей Ионин.

«Это Маск назвал его революцией, и журналисты и эксперты, которые не очень понимают. Я, безусловно, поздравляю Маска и его команду: это, безусловно, достижение. Не хочу как-то принизить успех Маска, просто чтобы быть точным, понятно, что это не впервые. Боковые ступени Шаттлов использовались многократно еще в 80-х годах, тоже, по сути, первая ступень ракеты. Да, они были твердотопливные, а у Маска ступень жидкостная», — сказал Ионин.

По словам Ионина, основным достижением Маска было непосредственно создание такого «дешевого» носителя, в дальнейшем компании SpaceX уже не удастся оказать такого значительного влияния на рынок запусков.

«Я не думаю, что это особо повлияет на рынок, потому, что на самом деле, основное достижение Маска было совершено им при создании Falcon 9, когда ему удалось создать ракету, по сути, класса Atlas V, но по цене в три раза дешевле. Atlas V стоит порядка 150-180 миллионов (долларов США), а Маск предлагает Falcon 9 за 60-70 миллионов. Вот это был прорыв. Несколько лет назад Маск говорил, что его технологии с возвращаемыми ступенями позволят снизить кардинально стоимость пуска. Сейчас он сказал, что это позволит снизить стоимость до 30%. Судя по всему, этот запуск не получился дешевле обычного», — сказал он.

«Falcon 9 уже сертифицирован под запуски Пентагона, это произошло два года назад, он уже использовался, насколько я знаю, для запуска спутников в интересах министерства обороны США. А для решения каких-то оперативных военных задач — нет. Falcon 9 — это стандартная ракета, которая очень долго готовится к пуску, ее использование в оперативных целях невозможно, здесь нужны другие средства, которые готовятся к запуску в течение нескольких минут», — подытожил эксперт.

Источник

Рекорд! SpaceX восстановила Falcon 9 для повторного запуска всего за 42 часа!

В одном из текстов, посвященных развитию многоразовых систем я писал, о сложностях , связанных с неоднократным использованием ракет. Среди них я выделили трудоемкость восстановительного процесса, его длительность и дороговизну, а также отмечал, что эти проблемы будут решены, но лишь в обозримом будущем.

Что тут скажешь, SpaceX сумел удивить меня еще раз, восстановив 1-ю ступень Falcon 9 с названием B1049 всего за 42 часа. Интересным фактом стало и то, что для самого блока это был третий запуск.

О чем говорит такая скорость?

Во-первых , если блок восстанавливают всего за 42 часа, это означает, что объем работ, необходимых для его восстановления сведен к минимуму. За 42 часа реально провести диагностику и минимальную замену. Иными словами, блок очень надежен.

Надежность ракеты действительно поражает . За 3 года Falcon 9 произвел 37 полетов, и все из них закончились успешно. Из возвращающихся ступеней 32 приземлились на платформу или на землю в штатном режиме и только 1 ступень за все три года потерпела аварию при возвращении.

Во-вторых , если объем работ минимален, значит минимальна и стоимость такого ремонта. Значит ракета становится еще дешевле.

Конечно, в 2018 году, Маск пообещал, что его компания освоит восстановление и запуск первых ступеней в течении 24 часов с момента ее посадки. Достичь результатов не удалось, но на мой взгляд и 42 часа выглядят фантастически.

Есть конечно и один нюанс. Восстановление первой ступени это еще не есть запуск всей ракеты. Так, после диагностики, первую ступень надо состыковать со второй, установить на стартовом столе и запустить. Реально ли вообще уложиться за 24 часа? Не уверен. У большинства ракет одна лишь подготовка к старту занимает около суток, да и есть ли смысл в такой спешке?

Действительно, одноразовый носитель вымирает как класс, скоро он совсем не сможет конкурировать с многоразовыми собратьями, ведь насколько дешевым бы не было производство ракеты, оно в любом случае означает использование дорогих движков, а других в космонавтике не бывает.

Самое время вспомнить слова генерального конструктора ракеты Союз-5 Игоря Радугина о том, что одноразовая ракета по эффективности приближается к одноразовому самолету.

Как мы помним, Союз-5 впоследствии стал одноразовым, а Радугин перешел на работу в S7 Space , где намерен создать уже по настоящему многоразовый Союз-7. Что же, пожелаем ему удачи.

Дорогие друзья, нам очень важна ваша поддержка- подписывайтесь на канал, ставьте палец вверх. Вам не сложно, а нам приятно

Источник

Лонгрид: Как и зачем SpaceX сажает ракетные ступени

Почему SpaceX Илона Маска вообще сажает ступени? Почему не используются парашюты? Почему иногда посадка производится на сушу, иногда на плавучую баржу, а иногда вообще не производится? Тему возвращаемых ракетных ступеней окружает очень много таких вот “Почему”. И сегодня мы, Alpha Centauri, разберём большинство из них.

Почему SpaceX Илона Маска вообще сажает ступени? Почему не используются парашюты? Почему иногда посадка производится на сушу, иногда на плавучую баржу, а иногда вообще не производится? Тему возвращаемых ракетных ступеней окружает очень много таких вот “Почему”. И сегодня мы, Alpha Centauri, разберём большинство из них.Итак, первый вопрос, который приходит в голову: зачем вообще нужно сажать и повторно использовать ракетные ступени? Вы наверняка уже много раз слышали о том, что это позволяет удешевить запуски и сделать космос более доступным. Такая себе забота о заказчике. Но на самом деле в вопросе есть не только идеологическая и пиар–составляющая. А гораздо более весомая экономическая. Оператор пусковых услуг, имеющий возможность управлять стоимостью запусков, всегда будет в выигрыше. А многоразовость позволяет ещё и более гибко управлять частотой запусков. Так что получается двойной выигрыш.

Стоимость полностью новой ракеты Falcon 9, а точнее её пуска, — около 62 миллионов долларов. Давайте посмотрим на эту цену наглядно:

  • Первая ступень. Новая, она стоит около 40 миллионов долларов
  • Вторая ступень. Её стоимость — 12 миллионов
  • Головной обтекатель, ещё 6 миллионов сверху
  • Горючее и окислитель — пара сотен тысяч долларов
  • Всё остальное — обслуживание и прибыль компании

Как видим, первая ступень вместе с обтекателем составляют почти три четверти стоимости ракеты. Причём следует понимать, что весомая часть стоимости первой ступени — это девятка двигателей Merlin 1–D. На второй ступени движок всего один.

Зачем вообще нужна вторая ступень и почему одной никак не обойтись — смотрите в нашем видео “проклятье одноступенчатых ракет”:

Сама по себе жидкостная ракетная ступень — это просто большой цилиндр для подачи топлива в двигатели.

Так вот, давайте проведем очень упрощённые математические подсчёты. Допустим, у нас есть целая одна ракета, первую ступень которой мы можем вернуть и повторно использовать 10 раз.

Таким образом для каждого нового запуска нам нужны новая вторая ступень, топливо и головной обтекатель. Ну и обслуживание плюс прибыль. То есть примерно 22 миллиона долларов.

Умножим 22 миллиона на 10 пусков и добавим стоимость первой ступени. Даже от фонаря докинем к ней по миллиону за каждое обслуживание.

Получается 22 x 10 + 40 + 10 = 270 миллионов долларов, суммарная стоимость десяти запусков с одной и той же ступенью. А теперь стоимость тех же десяти стартов, но в случае новой ракеты на каждом:

62 x 10 = 620 миллионов долларов.

Я напомню, что это очень грубые расчёты, они необходимы только для понимания идеи. Из двух компаний, одна из которых вынуждена каждый раз строить новую ракету, а вторая — использует ступени повторно, вторая может позволить себе продавать запуски почти в два раза дешевле. Для сохранения прибыли она может позволить себе цену в 28–30 миллионов долларов, в то время как конкурент может играться в демпинг только пока запуск окупается : а это около 60 миллионов долларов. Запуск одного Протона стоит 65 миллионов долларов, самой тяжёлой версии Ariane 5 — 150 миллионов евро, а старты Delta IV Heavy оцениваются от 160 миллионов долларов.

Поэтому вопрос многоразового использования — это в первую очередь вопрос контроля рынка. Ниже себестоимость — выше возможности управления ценой. Буквально за пять лет SpaceX благодаря гибкости ценообразования практически вывела с рынка коммерческих запусков Роскосмос и серьёзно отъела потенциальных клиентов у Европейских и американских конкурентов, Arianespace и United Launch Alliance.

Но и здесь деньги сами по себе не являются главной целью компании. Как вы знаете, SpaceX сейчас активно занимается выведением на орбиту собственной группировки спутников Starlink. Она позволит покрыть всю планету постоянным качественным соединением. Однако для размещения на низкой околоземной орбите нужны сотни аппаратов, в идеале — даже тысячи! И при возможности вывести всего 60 спутников за раз запланированный минимум в 12 000 аппаратов потребует целых двести запусков. Поэтому максимальное удешевление одного запуска просто необходимо. Обанкротившийся недавно конкурент Starlink, компания OneWeb, которая должна была обеспечить заказами Роскосмос, не даст соврать.

Подведём промежуточный итог. Если вашей целью является запуск пары десятков тысяч спутников и контроль за рынком запусков, вам просто необходим дешёвый носитель и запас в стоимости для демпинга. Именно два этих компонента можно назвать причиной, почему SpaceX вообще взялась за многоразовость.

Хорошо. Как мы знаем, первые ступени Falcon 9 и блоки первой ступени Falcon Heavy совершают реактивную посадку, то есть замедляются до нулевой скорости при помощи реактивной струи из двигателей. Также должна садиться и будущая ракета Starship, испытания её базового прототипа под названием Starhopper мы наблюдали в прямом эфире. Но почему не использовать самый очевидный способ возврата ступени, парашют?

Этот вопрос, кстати, нам продолжают задавать во время прямых трансляций до сих пор. На самом деле здесь в работу вмешиваются три основных фактора.

Во–первых, энтузиасты сообщества cosmos.d3.ru как–то подсчитали, что масса необходимого парашюта будет такой, что обязательно придётся увеличивать топливные баки и загружать больше топлива (либо уменьшать полезную нагрузку), что, конечно, мало кого устроит.

Зависимость от погодных условий тоже никто не отменял: сильный порывистый ветер будет уносить ступень далеко от предполагаемого места падения, а сегодняшние метеорологические возможности не позволяют точно предсказать куда именно должна будет приземлиться наша ракета. Да, иногда запуски Falcon 9 переносят из–за плохой погоды около баржи, но всё–таки реактивная посадка оставляет больший диапазон подходящих погодных условий.

Ну и грустный опыт Шаттлов, да и самих “Фэлконов”, показывает, что приводнение в солёную воду океана может серьёзно навредить электронике. При этом возникнут трудности с быстрым повторным использованием ступени, что противоречит заявленным планам компании в виде возможности повторных запусков в течение одних суток после возврата.

Есть конечно и другой способ использовать парашют, предложенный компанией Rocket Lab, но о нём мы поговорим позже. На деле же если вы всерьёз собираетесь возвращать первые ступени своей тяжёлой ракеты–носителя, реактивная посадка является очевидным, самым удобным и самым надёжным способом.

Ну окей, допустим, мы в ракетной компании решили, что нам нужны многоразовые первые ступени. И что их посадка будет реактивной. Давайте теперь выясним, что они должны “уметь”, какими свойствами обладать.

Во–первых, очевидно, что ступень должна уметь точно садиться в определённую точку, будь то баржа в океане, или площадка на его берегу. То есть нужна система навигации, способная направить ракету в заранее заданную координату.

Чтобы ракета туда долетела, мы должны каким–то образом ею управлять, рулить. Здесь пригодятся движки ориентации и самые настоящие решётчатые рули, позволяющие стабилизировать и направлять ступень, взаимодействуя с потоками воздуха, особенно на сверхзвуковой скорости.

Нам нужно иметь возможность развернуть ракету, направить в нужную сторону, сбросить скорость, и, наконец, мягко коснуться поверхности. То есть нужны двигатели, способные управлять направлением реактивной струи, вектором тяги. Помимо этого, они должны уметь регулировать саму тягу, то есть то, как сильно мы тормозим в определённый момент. Это самый сложный этап посадки, поэтому он является самым важным. Именно поэтому SpaceX начинала разработку Falcon 9 с прыжковых испытаний прототипа под названием Grasshopper, кузнечик. По той же причине строящийся сейчас Starship уже с новыми двигателями в первую очередь научат мягкой посадке. Всё остальное гораздо проще: рули и систему навигации можно испытывать и экспериментировать с ними уже в процессе.

Ну и не стоит забывать об ещё одном важном моменте: для реактивной посадки ступени нам необходимо топливо, которое позволит зажигать двигатели. Здесь мы плавно переходим к следующему пункту.

Да, возврат ступени невозможен с пустыми баками. Нам всегда нужно оставить хоть немного топлива, чтобы выполнить на орбите и около поверхности определённые манёвры, о которых поговорим позже.

Falcon 9 — ракета тяжёлого класса, она способна выводить на различные орбиты довольно тяжёлые грузы. И возможность возврата ступени сама по себе зависит от двух переменных: параметров орбиты (высота, наклонение) и массы выводимой полезной нагрузки.

От массы зависит то, сколько топлива в секунду мы будем сжигать, ведь чем она больше, тем большая тяга необходима. А от орбиты зависит точка, в которой первая ступень окажется после отделения от второй.

Поэтому когда мы запускаем лёгкий груз на низкую околоземную орбиту с удачным наклонением, у нас остаётся много топлива, а путь к наземной посадочной площадке совсем небольшой, топлива вполне достаточно.

Если же запуск производится на сложную геопереходную орбиту, а масса груза подходит к границе возможностей ракеты, то первой ступени потребуется выполнить больше работы. Топлива в баках останется мало, либо вообще не останется, а точка разделения ступеней будет так далеко от суши и от побережья в принципе, что мы не сможем ни направить ракету к посадке, ни затормозить непосредственно в момент посадки. Придётся позабыть о многоразовости и поступить так, как делают конкуренты — просто утопить ступень в океане. Если вы не Китай, сбрасывающий ступени на головы благодарным гражданам.

Но это мы рассмотрели две крайности. А между ними, как вы могли догадаться, наши любимые плавучие платформы: JRTI и OCISLY. Эти автономные баржи применяются тогда, когда топлива недостаточно для возврата ступени на сушу, но хватает для посадки «вниз», в океан. Обычно дистанция от берега составляет около 400 километров, хотя рекорд был достигнут в миссии Falcon Heavy STP–2 в июне 2019 года: тогда баржа находилась в 1239–ти километрах от стартовой площадки. Правда и ступень тогда не села, уж больно сложным был запуск.

Как видите, даже в минимальном приближении посадка — комплексный и сложный процесс. Но мы ведь не можем не рассмотреть его более детально.

Итак, начинается всё в момент разделения ступеней. Тут нас ждёт небольшое количество англоязычных терминов. Мы конечно же поясним их смысл, но точных русскоязычных аналогов подобрать невозможно, потому что Роскосмос не занимается возвратом ракет. Рассмотрим сначала вариант возвращения к месту старта. Первая ступень активно маневрирует двигателями ориентации, чтобы уйти от пламени, вырывающемся из двигателя второй ступени. При этом первая ступень ещё и разворачивается. Включает 3 двигателя Merlin для выполнения Boostback burn — этап, который нужен для погашения и изменения направления горизонтальной компоненты скорости ступени. С вертикальной компонентой справится гравитация Земли, нет смысла тратить на неё топливо. Поэтому при возврате к месту старта первая ступень подлетает вверх.

Перед входом в плотные слои атмосферы выполняется Reentry burn: три двигателя зажигаются ещё раз. Ведь перед ступенью, двигающейся на сверхзвуковой скорости образуется ударная волна, в которой воздух сжимается. Из–за этого повышается его температура. Если ступень будет двигаться слишком быстро, то воздух ударной волны может её перегреть, несмотря на имеющуюся жидкостную систему охлаждения.

После того, как двигатели отработают несколько секунд, в дело вступают решётчатые рули. На сверхзвуковой скорости воздух похож на вязкую жидкость, поэтому в таких условиях очень эффективны эти замечательные устройства, изобретённые в 50–х коллективом, возглавляемым Сергеем Белоцерковским. Их активную работу всегда можно видеть на трансляция SpaceX. На этом этапе главная задача ракеты — затормозить и направиться к нужной точке посадки. И здесь тоже есть свой нюанс.

Во–первых, сама по себе точка посадки. Если речь о суше, то всё понятно: необходимая координата просто находится в центре посадочной площадки. Но как быть с посадкой в океане?

А она тоже точно рассчитана и предопределена! Вопреки расхожему мнению, ступень не летит к дрейфующей плавучей барже. Она направляется в заранее заданную координату, идеальную в плане затрат топлива, в то время как баржа со своей стороны автономно и без управления человеком должна удерживать собственный центр в этой координате. На высоте около 10 километров в работу активно вступает радар на первой ступени: он помогает точно определить, где находится баржа, совпадают ли её координаты с координатами точки посадки и хватает ли топлива для самой посадки. Если что–то идёт не так, ступень автоматически направляется в океан и пытается мягко сесть на его поверхность, чтобы не повредить осколками от возможного взрыва платформу.

Если всё в порядке, начинается завершающий этап.

При подлёте к барже выполняется последнее зажигание двигателей, Landing Burn. Причём рассчитано оно так, чтобы торможение было идеальным и ступень снизила скорость до нулевой ровно в момент касания платформы. Это позволяет избежать удара и подпрыгиваний во время волнения на воде. Хотя удаётся не всегда. Выдвигаются посадочные опоры, которые позволяют мягко сесть, на случай немного жёсткой посадки в опорах есть специальные картриджи, которые, сминаясь, гасят энергию удара…

А затем ступень фиксируется прибывшим персоналом при помощи цепей. При этом у SpaceX есть специальный управляемый удалённо робот OctaGrabber: он должен фиксировать ускоритель при помощи гидравлических домкратов.

Так что в отличие от той же малютки Blue Origin New Shepard, Falcon 9 не зависает над посадочной площадкой: она действительно максимально плавно тормозит до нуля метров в секунду.

Кстати, о Blue origin и прочих конкурентах. Ролик–презентации ракеты New Glenn удивил многих любителей космоса именно тем, что там ступень садится прямо на плавучую платформу во время движения. Обеспечить такую посадку гораздо труднее, поэтому, несмотря на утверждения представителей Blue Origin, будто эта посадка будет более стабильной, я склонен думать, что пока это просто неграмотная анимация, а не реальные планы компании Джеффа Безоса. Скорее всего, New Glenn будут садиться по той же схеме, что и Falcon 9 с Falcon Heavy. Первый полёт ракеты этого семейства запланирован на следующий год, а вот о посадках, помимо того, что они в принципе будут, ничего не известно.

Rocket Lab, которую мы сегодня уже упоминали, планируют другой способ: её лёгкая Electron из углепластика вполне может спускаться на парашютах, правда (помните о вреде солёной воды) не в океан. Парашют должен будет подхватываться специальным вертолётом, который затем мягко опустит ступень на специальное судно. Затея опасная и пока труднопредставимая, но уже в ближайших запусках компания Питера Бека займётся испытаниями этой системы. Зрелище будет очень классное, мы обязательно покажем его в прямых эфирах, которые регулярно проводим на канале. К слову, в марте компания уже успела поймать массогабаритный макет ступени в полёте. Выглядит завораживающе:

Подобный рокетлабовскому подход предлагают и американские конкуренты Илона Маска, United Launch Alliance, только их концепт предполагает возвращение одного двигательного отсека, а не всей ступени. Правда об испытаниях и приблизительных сроках пока ничего не слышно.

О важности многоразовых систем заговорили Европейская Арианспейс и российский Роскосмос, но дальше слов дело тоже пока что не заходило.

Регулярно новости о “КОНКУРЕНТАХ ИЛОНА МАСКА” слышны из Китая: небольшие частные компании Поднебесной периодически проводят тесты зависания и посадки реактивных систем. Но во–первых они всё ещё очень далеки от реализации, а во–вторых речь пока идёт об очень далёких от реальных ракет прототипах.

Так что ближе всего к реализации многоразовых проектов на момент записи этого ролика, весну 2020–го года, находятся Rocket Lab и Blue Origin. И… сама SpaceX, чей Starship потихоньку строится в виде полноразмерных прототипов и активно готовится к прыжкам на несколько километров.

Система посадки этого летательного средства будет аналогична той, что используется в Falcon 9. Только посадка будет всегда на сушу: мощности системы Starship–Superheavy по планам должно быть достаточно для выведения любых адекватных нагрузок на любую орбиту и возврата “домой” на остатках топлива. Сама “первая ступень” системы, ракета SuperHeavy в будущем должна садиться прямо на стартовый стол, но в первых пусках во избежание аварий будет осуществлять посадку на специальных площадках при помощи опор вроде тех, что есть у Falcon 9.

Но обо всём этом нам только предстоит узнать.

Если же говорить о делах насущных, Falcon 9 — единственная многоразовая ракета. Да, пока мы не знаем, сколько раз она действительно может слетать повторно, во сколько именно обходится межполётное обслуживание, но оно точно дешевле, чем производство полностью новой ступени. А значит, SpaceX верно идёт к своей цели.

Спасибо за прочтение материала, надеюсь, он был вам полезен.

Источник

Оцените статью