Уравнение реакции гидролиза фосфата натрия по первой ступени

Содержание
  1. Гидролиз фосфата натрия
  2. Общие сведения о гидролизе фосфата натрия
  3. Гидролиз фосфата натрия
  4. Примеры решения задач
  5. Соли фосфорной кислоты H3PO4
  6. Гидролиз фосфата натрия Na3PO4
  7. Гидролиз гидрофосфата натрия Na2HPO4
  8. Гидролиз дигидрофосфата натрия NaH2PO4
  9. Применение фосфатов
  10. УЧЕБНАЯ КНИГА ПО ХИМИИ
  11. § 7.3. Соли. Гидролиз 2. Соль образована слабой кислотой и сильным основанием, например ацетат натрия NaCH3COO, карбонат натрия (сода) Na2CO3, нитрит натрия NaNO2, сульфит натрия Na2SO3, сульфид натрия Na2S, цианид натрия NaCN. Карбонат натрия диссоциирует: Na2CO3 = 2Na + + . Гидролизу подвергается карбонат-ион. Гидролиз проходит в две ступени: + Н2О = + ОН – , + Н2О = Н2CO3 + ОН – . В водном растворе гидролиз по второй ступени не проходит – из раствора соды углекислый газ не выделяется. Чтобы гидролиз прошел по второй ступени, равновесие следует сместить вправо добавлением в раствор кислоты (ионов водорода). Образующаяся при этом неустойчивая угольная кислота распадается на углекислый газ и воду: Обычно приводимое в учебниках химии уравнение реакции между карбонатом натрия и кислотой с образованием углекислого газа представляет собой смещенную вправо реакцию гидролиза. Кроме того, это не реакция обмена, а реакция гидролиза, проходящая по второй ступени. Как реакция обмена она протекает при действии газообразного хлороводорода на кристаллический карбонат натрия. Пример. Рассчитать рН 0,1М раствора карбоната натрия. Будем считать, что гидролиз проходит только по первой ступени: + Н2О = + ОН – . После преобразований константы гидролиза получаем: В этом выражении Ккисл есть константа диссоциации иона : = + Н + , Обратите внимание, что в расчете используется константа диссоциации кислоты H2CO3 по второй ступени! Для угольной кислоты из справочных данных находим: | | | К1 = 4,31•10 –7 , = + Н + К2 = 5,61•10 –11 .

Гидролиз фосфата натрия

Общие сведения о гидролизе фосфата натрия

Формула – Na3PO4. Представляет собой кристаллы белого цвета. Молярная масса – 164 г/моль.

Читайте также:  Расчет лестницы при входе

Рис. 1. Внешний вид фосфата натрия.

Гидролиз фосфата натрия

Гидролизуется по аниону. Характер среды щелочной. Уравнение гидролиза выглядит следующим образом:

3Na + + PO4 3- + H2O ↔ HPO4 2- + OH — + 3Na + (полное ионное уравнение);

PO4 3- + H2O ↔ HPO4 2- + OH — (сокращенное ионное уравнение);

Теоретически возможна вторая и третья ступени:

2Na + + HPO4 2- + H2O ↔ H2PO4 — + OH — + 2Na + (полное ионное уравнение);

HPO4 2- + H2O ↔ H2PO4 — + OH — (сокращенное ионное уравнение);

Na + + H2PO4 — + H2O ↔ H3PO4 + OH — + Na + (полное ионное уравнение);

Примеры решения задач

Задание Установите соответствие между названием соли и её способностью к гидролизу:

Способность к гидролизу

Гидролизу не подвергается

Гидролиз по катиону

Гидролиз по аниону

Гидролиз по катиону и аниону

Ответ а) сульфид лития представляет собой соль, образованную слабой кислотой (сероводородной) и сильным основанием (гидроксидом лития):

Подвергается гидролизу по аниону. Вариант 3.

б) хлорат калия представляет собой соль, образованную слабой кислотой (хлорноватой) и сильным основанием (гидроксидом калия):

Подвергается гидролизу по аниону. Вариант 3.

в) нитрит аммония представляет собой соль, образованную слабой кислотой (азотистой) и слабым основанием (гидроксидом аммония):

Подвергается гидролизу по катиону и аниону. Вариант 4.

г) пропионат натрия представляет собой соль, образованную слабой кислотой (пропионовой) и сильным основанием (гидроксидом натрия):

Подвергается гидролизу по аниону. Вариант 3.

Задание Установите соответствие между формулой соли и типом её гидролиза:

по катиону и аниону

гидролиз не происходит

Ответ а) хлорид железа (III) представляет собой соль, образованную сильной кислотой (хлороводородной) и слабым основанием (гидроксидом железа (III)):

Подвергается гидролизу по катиону. Вариант 1.

б) сульфид бария представляет собой соль, образованную слабой кислотой (сероводородной) и сильным основанием (гидроксидом бария):

Подвергается гидролизу по аниону. Вариант 2.

в) фторид калия представляет собой соль, образованную сильной кислотой (фтороводородной) и сильным основанием (гидроксидом калия):

Гидролизу не подвергается. Вариант 4.

г) сульфат цинка представляет собой соль, образованную сильной кислотой (серной) и слабым основанием (гидроксидом цинка):

Подвергается гидролизу по катиону. Вариант 1.

Источник

Соли фосфорной кислоты H3PO4

H3PO4 образует три ряда солей:

Как видно из реакций, приведенных выше, та или иная соль получается в зависимости от соотношения молярных масс реагирующих кислот и щелочей.

Средние соли фосфорной кислоты (фосфаты) нерастворимы в воде, за исключением аммония и фосфатов щелочных металлов. Кислые соли, наоборот, хорошо растворяются в воде, лучше всего — дигидрофосфаты.

Отличительной особенностью солей фосфорной кислоты является принципиально разный характер среды, образующейся в водных растворах средних и кислых солей в результате их гидролиза.

Гидролиз фосфата натрия Na3PO4

Основная ступень гидролиза фосфата натрия выражается следующей реакцией:
Na3 PO4 3- + H2O ↔ Na2 HPO4 2- +Na OH —

Образующиеся ионы HPO4 2- очень слабо диссоциируют (см. выше диссоциацию фосфорной кислоты п.3), практически не подкисляя раствор, в таких условиях кислотность раствора определяется только гидроксид-ионами OH — , по этой причине водные растворы средних фосфатов имеют сильно щелочную среду.

Гидролиз гидрофосфата натрия Na2HPO4

Основная ступень гидролиза гидрофосфата натрия выражается следующей реакцией:
Na2 HPO4 2- + H2O ↔ Na H2PO4 — +Na OH —

Образующиеся ионы H2PO4 2- диссоциируют достаточно хорошо (см. выше диссоциацию фосфорной кислоты п.2), нейтрализуя значительную часть гидроксид-ионов OH — , по этой причине водные растворы гидрофосфатов имеют слабощелочную среду.

Гидролиз дигидрофосфата натрия NaH2PO4

В растворах дигидрофосфатов наряду с гидролизом идет процесс диссоциации дигидрофосфат-ионов:
Na H2PO4 — + H2O ↔ H3PO4 +Na OH —
H2PO4 — ↔ H + +HPO4 2-

Примечательно, что второй процесс превалирует над первым, по этой причине, все гидроксид-ионы OH — , являющиеся продуктом гидролиза, полностью нейтрализуются продуктами диссоциации — катионами водорода H + , которых присутствует в растворе в избытке, что и объясняет слабокислый характер среды растворов дигидрофосфатов.

Применение фосфатов

Соли фосфорной кислоты находят широчайшее применение в современной стоматологии и ортопедии, в бытовой химии:

Апатит Ca5(OH)(PO4)3 — важнейший компонент зубов и костей. Зубной кариес является результатом химической реакции фосфата с кислой средой в ротовой полости (кислоты содержатся в пище, а также образуются в результате жизнедеятельности микроорганизмов, находящихся во рту).

Фтор, входящий в состав зубной пасты, способствует образованию на зубах тонкого слоя фторапатита, более устойчивого к негативному действию кислот:
Ca5(OH)(PO4)3+F → Ca5F(PO4)3+OH —

Современные пломбировочные материалы, применяющиеся в стоматологии, содержат труднорастворимые фосфаты алюминия и цинка (AlPO4, Zn3(PO4)2), которые являются очень устойчивыми к действию кислот.

В последнее время соли фосфорной кислоты стали использоваться в ортопедии для восстановления сломанных костей — специальная паста, в состав которой входят дигидрофосфат кальция, фосфат натрия, фосфорит вводится в место перелома кости, формируя в течение нескольких минут сломанный участок — по мере сращения кости искусственная кость замещается естественной костной тканью.

Натриевая соль трифосфорной кислоты нашла применение в моющих средствах, которые используются для смягчения жесткой воды — ионы магния и кальция связываются трифосфорной кислотой, и не взаимодействуют с анионами мыла.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Источник

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47/2003;
1, 2, 3, 4, 5, 7/2004

§ 7.3. Соли. Гидролиз

2. Соль образована слабой кислотой и сильным основанием, например ацетат натрия NaCH3COO, карбонат натрия (сода) Na2CO3, нитрит натрия NaNO2, сульфит натрия Na2SO3, сульфид натрия Na2S, цианид натрия NaCN.
Карбонат натрия диссоциирует:

Na2CO3 = 2Na + + .

Гидролизу подвергается карбонат-ион. Гидролиз проходит в две ступени:

+ Н2О = + ОН – ,

+ Н2О = Н2CO3 + ОН – .

В водном растворе гидролиз по второй ступени не проходит – из раствора соды углекислый газ не выделяется. Чтобы гидролиз прошел по второй ступени, равновесие следует сместить вправо добавлением в раствор кислоты (ионов водорода). Образующаяся при этом неустойчивая угольная кислота распадается на углекислый газ и воду:

Обычно приводимое в учебниках химии уравнение реакции между карбонатом натрия и кислотой с образованием углекислого газа

представляет собой смещенную вправо реакцию гидролиза. Кроме того, это не реакция обмена, а реакция гидролиза, проходящая по второй ступени. Как реакция обмена она протекает при действии газообразного хлороводорода на кристаллический карбонат натрия.

Пример. Рассчитать рН 0,1М раствора карбоната натрия.
Будем считать, что гидролиз проходит только по первой ступени:

+ Н2О = + ОН – .

После преобразований константы гидролиза получаем:

В этом выражении Ккисл есть константа диссоциации иона :

= + Н + ,

Обратите внимание, что в расчете используется константа диссоциации кислоты H2CO3 по второй ступени!
Для угольной кислоты из справочных данных находим:

|
|
|

К1 = 4,31•10 –7 ,
= + Н + К2 = 5,61•10 –11 .

Эти данные подставляем в формулу:

рОН = –lg 4,22•10 –3 = 2,4,
рН = 14 – рОН = 11,6.

При какой концентрации раствора гидроксида натрия в воде достигается то же значение рН? Рассчитайте. Можно дать приблизительный ответ.
А как быть, если вас попросят написать уравнение гидролиза кислой соли, например гидрокарбоната натрия NaHCO3? Если вы сразу же напишите уравнение диссоциации соли

NaHCO3 = Na + + ,

то, очевидно, гидролизу подвергается ион и уравнение гидролиза имеет вид:

+ Н2О = Н2СO3 + ОН – .

Образование неустойчивой угольной кислоты приводит к тому, что уже при слабом нагревании начинается выделение из раствора углекислого газа (тесто с добавленным в него пекарским порошком «поднимается»).
По теории кислот и оснований И.Н.Брёнстеда кислотный ион может быть и кислотой, и основанием в зависимости от того, записано ли уравнение реакции гидролиза или уравнение взаимодействия с ионом водорода:

3. Соль образована слабым основанием и слабой кислотой, например ацетат аммония NH4CH3COO, гидрокарбонат аммония NH4HCO3, гидросульфит аммония NH4HSO3, нитрит аммония NH4NO2. Гидролиз такой соли рассмотрим на примере ацетата аммония, диссоциирующего в водном растворе по уравнению

NH4CH3COO = + CH3COO – .

Оба иона этой соли образуют с водой слабые электролиты – гидроксид аммония и уксусную кислоту, поэтому реакцию гидролиза можно описать одним общим уравнением:

+ CH3COO – + Н2О = NН4ОН + СН3СООН.

В связи с тем, что константы диссоциации уксусной кислоты СН3СООН и гидроксида аммония NН4ОН примерно одинаковы, концентрации ионов водорода и гидроксид-ионов также примерно равны, и поэтому раствор ацетата натрия имеет примерно нейтральную среду, рН 7.
Гидролиз соли (NH4)2S, диссоциирующей по уравнению

(NH4)2S = 2 + S 2– ,

проходит по двум ступеням:

+ S 2– + Н2О = NH4ОН + НS – (1-я ступень),

+ НS – + Н2О = NH4ОН + Н2S (2-я ступень).

В отличие от двух предыдущих вариантов гидролиза (соль образована сильной кислотой и слабым основанием или слабой кислотой и сильным основанием) в данном случае рН раствора не зависит от концентрации соли (но зависит от того, какой из одноименных ионов дополнительно введен в раствор).

4. Соль образована сильным основанием и сильной кислотой. Такая соль и ее ионы гидролизу не подвергаются. Примеры таких солей: хлорид натрия NaCl, сульфат натрия Na2SO4,
нитрат натрия NaNO3.
Растворы таких солей почти нейтральны, рН 7. Среда таких солей может быть слегка кислотной или слегка основной из-за других эффектов, связанных с поведением растворов сильных электролитов.
Выражения константы гидролиза включают ионное произведение воды и константы диссоциации образующихся слабых электролитов. При повышении температуры ионное произведение воды в значительно большей степени возрастает по сравнению с константами диссоциации слабых кислот и оснований. В связи с этим константа гидролиза должна возрастать, показывая, что равновесие гидролиза смещается вправо, в сторону продуктов (гидролиз сопровождается поглощением теплоты, Н > 0). Нагреванием удается сместить равновесие гидролиза вправо.
Часто смещение равновесия гидролиза вправо можно вызвать удалением продуктов реакции. При нагревании раствора сульфида аммония (NH4)2S растворимость аммиака NH3 и сероводорода H2S в воде понижается, они уходят из сферы реакции (в лабораторной практике гидролиз проходит в открытых системах), и равновесие гидролиза резко смещается вправо.
Гидролиз, сопровождающийся удалением продуктов из зоны реакции (газ или осадок), часто условно называют необратимым гидролизом (не в термодинамическом смысле!).
Сульфид алюминия Al2S3 в водном растворе существовать не может, получить его взаимодействием ионов алюминия и сульфид-ионов не удается. При сливании растворов хлорида алюминия и сульфида натрия выпадает осадок гидроксида алюминия Al(OH)3 и выделяется сероводород H2S. Сульфид алюминия можно получить реакцией между металлическим алюминием (опилки, порошок) и серой (порошок). Если полученное кристаллическое вещество Al2S3 поместить в воду, то протекает реакция гидролиза:

При сливании растворов хлорида алюминия и сульфида натрия проходит реакция

Примером необратимого гидролиза можно считать реакции карбидов кальция и алюминия с водой при получении ацетилена и метана соответственно:

С практической и теоретической точек зрения важно обсудить вопрос о среде фосфатов натрия. Раствор фосфата натрия Na3PO4 (0,1М) имеет основную реакцию с рН 12, что объясняется гидролизом фосфат-иона:

+ Н2О = + ОН – .

Раствор Na2HPO4 (0,1М) также имеет основную среду с рН 9,5, что объясняется одновременным протеканием двух процессов:

1) гидролиз иона:

+ Н2О = + ОН – ;

2) диссоциация иона как слабой кислоты:

= Н + + .

Количества ионов Н + и ОН – , образующихся по этим двум реакциям, примерно одинаковы, поэтому среда раствора близка к нейтральной.
Раствор NaH2PO4 (0,1М) имеет кислотную среду раствора с рН 4,5, что объясняется преимущественной диссоциацией иона :

= Н + +.

Следовательно, при объяснении среды таких растворов, как по-разному замещенные фосфаты натрия, необходимо учитывать и гидролиз соли, и ее диссоциацию.
Рассмотренный выше сокращенный молекульно-ионный способ написания уравнений гидролиза, например:

Al 3+ + H2O = AlOH 2+ + H + ,

удобен для вычисления константы гидролиза, рН раствора и концентраций ионов. Однако в водном растворе все катионы гидратированы, причем связи шести ближайших молекул воды с катионом довольно прочные, уравнение реакции гидролиза правильнее записывать так:

Координационное число иона алюминия, равное шести, в этом процессе сохраняется. Можно записать это уравнение по-другому, если ион гидроксония заменить на ион водорода:

Это уравнение отражает не гидролиз, а диссоциацию комплексного иона [Al(H2O)6] 3+ как слабой кислоты.
Этот пример ярко показывает, что одно и то же явление может быть объяснено по-разному, в зависимости от уровня наших знаний и целей описания.
Напишите уравнения дальнейшей диссоциации иона [Al(H2O)6] 3+ , помня, что гидроксид алюминия Al(ОН)3 выпадает в осадок.

Список новых и забытых понятий и слов

Источник

Оцените статью