Ступень давления паровой турбины это
Главное меню
Судовые двигатели
В турбине со ступенями давления пар расширяется от начального давления р 0 до конечного р 2 в ряде последовательно расположенных ступеней.
На рис. 5 показана схема активной турбины с тремя ступенями давления. Рабочие диски 7 насажены на общий вал 8 и отделены один от другого неподвижными диафрагмами, в которых установлены сопла промежуточных ступеней. Сопла 1 первой ступени закреплены в корпусе турбины. Свежий пар давлением р 0 , скоростью с 0 подводится к соплам первой ступени, в которых расширяется до давления р 1 ; скорость пара увеличивается до значения c 1 . С этой скоростью пар вступает на рабочие лопатки 2 первой ступени и, отдавая им свою кинетическую энергию, приводит их и диск турбины в движение. При этом скорость пара уменьшается до значения с 2 ’, давление же пара па рабочих лопатках остается постоянным. Подобный процесс происходит в соплах 3, 5 и па рабочих лопатках 4, 6 последующих ступеней, где давление пара понижается. Этот процесс легко проследить по кривым изменения давления и скорости пара (см. рис. 5). Благодаря распределению теплоперепада между отдельными ступенями в таких турбинах можно достичь высокой экономичности при умеренных окружных скоростях. Ступени давления применяют как в активных, так и в реактивных турбинах, и они наиболее распространены в современных главных судовых турбинах.
Из рассмотренных схем активных турбин можно сделать вывод, что ступени скорости — более эффективное средство понижения наивыгоднейшей окружной скорости, чем ступени давления, так как они понижают ее пропорционально принятому числу ступеней скорости, тогда как ступени давления понижают окружную скорость прямо пропорционально корню квадратному из числа ступеней давления. Отсюда следует, что две ступени скорости эквивалентны четырем ступеням давления, а три ступени скорости эквивалентны девяти ступеням давления и т. д. Однако существенным недостатком турбин со ступенями скорости является их относительно низкий к. п. д., по сравнению с турбиной со ступенями давления; эффективный к. п. д. турбины с двумя ступенями скорости составляет 0,55—0,65 против 0,7—0,8 в турбинах со ступенями давления.
Источник
Многоступенчатые турбины со ступенями давления
Идея ступеней давления пара заключается в следующем: вместо того чтобы расширить пар от начального до конечного давления в одной ступени, его заставляют расширяться в нескольких последовательно расположенных ступенях, используя в каждой ступени небольшие перепады давления. Ступени давления применяют как в активных, так и в реактивных турбинах.
Рассмотрим активную турбину с тремя ступенями давления (рис. 89).
Рис 89 Активная турбина с тремя ступенями давления
На валу 1 насажены три диска 2, 3, 4, на которых укреплены рабочие лопатки 6, 8, 10. Корпус турбины разделен диафрагмами на три отдельные камеры. Сопла 5 первой ступени расположены в передней стенке турбины, а сопла 7 второй и 9 третьей ступеней — в диафрагмах по их окружности.
Свежий пар давлением р0 со скоростью с0 подводят к соплам первой ступени, где он расширяется до давления р’1, а скорость увеличивается до значения с1. После этого пар попадает на рабочие лопатки 6 и отдает им свою кинетическую энергию. Скорость пара уменьшается до c2, давление же пара по обе стороны диска остается постоянным. Затем пар поступает в сопла второй ступени 7, где расширяется от давления р’1 до давления р”1 и, приобретая снова кинетическую энергию, поступает на рабочие лопатки 8, где отдает эту энергию. При прохождении по рабочим лопаткам 8 пар сохраняет давление р”1 неизменным.
Расширение пара в соплах третьей ступени 9 и преобразование кинетической энергии в механическую работу на рабочих лопатках 10 происходит так же, как в первой и второй ступенях, после чего пар давлением p2 со скоростью c2 поступает по паровыпускному патрубку в конденсатор.
Таким образом, расширение пара от давления р0 до давления p2 происходит не сразу, а в три приема, т.е. тремя ступенями. Ввиду того что по мере расширения пара его объем возрастает, высоту сопл и лопаток турбины приходится постепенно увеличивать.
Благодаря равномерному распределению перепада давлений в этих турбинах удается достичь высокой экономичности. Они могут быть изготовлены практически на любую мощность и являются наиболее распространенным типом современных главных судовых турбин. Такая турбина в зависимости от рабочего тела (пар или газ) может быть паровой или газовой. В современных паровых турбинах чисто активные ступени давления не применяются, ибо в них пар при прохождении каналов рабочих лопаток дополнительно расширяется, т. е. активные турбины изготавливают с некоторой степенью реактивности на рабочих лопатках.
Источник
Принцип действия активной и реактивной ступеней турбины. Преобразование энергии пара
Турбинной ступенью называется совокупность неподвижного ряда сопловых (направляющих) лопаток, в каналах которых происходит расширение и ускорение потока пара (преобразование потенциальной энергии пара в кинетическую энергию движущейся струи пара), и следующего за ним подвижного вращающегося ряда рабочих лопаток, в которых кинетическая энергия движущегося потока пара преобразуется в механическую энергию вращения ротора.
Простейшая одноступенчатая активная турбина (рис. 42.а) состоит из ряда неподвижных сопловых лопаток, образующих сужающиеся каналы – сопла в дозвуковых турбинах, и сужающе-расширяющиеся сопла – в сверхзвуковых турбинах. В каналах соплового аппарата потенциальная энергия пара преобразуется в кинетическую энергию движущейся струи, при этом происходит расширение пара и он с большой скоростью поступает в каналы, образованные рабочими лопатками. Так как каналы рабочих лопаток активной турбины имеют постоянное (по ходу движения пара) проходное сечение, то расширения пара в них не происходит. В каналах рабочих лопаток пар только изменяет направление движения, оказывая силовое воздействие на рабочие лопатки, закрепленные на диске. Усилие, развиваемое паром на рабочих лопатках, через диск передается на вал турбины, приводя его во вращение. Вал турбины вращается в подшипниках, установленных в корпусе. Корпус турбины образует замкнутое пространство, организуя движение пара и препятствуя его рассеянию в окружающую среду. Пройдя ряд сопловых и рабочих лопаток, отработавший пар покидает корпус турбины, и через выхлопной патрубок поступает в главный конденсатор (у конденсационных турбин) или в магистраль отработавшего пара (у противодавленческих турбин). Каналы рабочих и сопловых лопаток составляют проточную часть турбины.
Принцип действия реактивной турбины (рис. 42.б) несколько иной. На пустотелый вал насажены пустотелые спицы, заканчивающиеся в радиальных направлениях соплами. Пар поступает по валу и спицам к соплам, разгоняется в них до больших скоростей, и при истечении через сопла оказывает реактивное воздействие на спицы, приводя во вращение вал.
Описанная конструкция реактивной турбины из-за огромной частоты вращения на практике не применяется. Наибольшее распространение в судовых паротурбинных установках нашли реактивные турбины, использующие рассмотренный выше принцип работы, но схожие по своему устройству с активными турбинами. В таких реактивных турбинах расширение пара осуществляется как в направляющем аппарате, так и на рабочих лопатках.
Активная турбинная ступень
В активной турбине (рис. 43) свежий пар с начальными параметрами: давлением p0 , температурой t0 и абсолютной скоростью c0 , подводится к сопловому аппарату (сечение 0). В каналах соплового аппарата происходит расширение пара, в результате чего скорость потока пара на выходе из сопл (сечение 1) увеличивается до значения c 1 , а давление снижается до значения p1. С этой скоростью пар поступает в каналы, образованные рабочими лопатками. В каналах рабочих лопаток происходит изменение направления движения потока пара без его расширения. Абсолютная скорость пара на выходе из каналов рабочих лопаток (сечение 2) уменьшается до величины выходной скорости c2 , а давление пара остается равным значению p1 . В результате обтекания рабочих лопаток и поворота потока пара возникает сила, направленная от вогнутой поверхности лопатки в сторону выпуклой, передающаяся через диск на вал и создающая крутящий момент на валу турбины. Диск турбины приходит во вращение, при этом рабочие лопатки на среднем диаметре движутся с окружной скоростью u .
На диаграмме i — s начальным параметрам пара на входе в сопловый аппарат соответствует точка A0 . Теоретически (без учета потерь) процесс расширения пара в сопловом аппарате от давления p0 до давления p1 протекает изоэнтропно. Параметрам пара после соплового аппарата при изоэнтропном расширении соответствует точка АНt , а сам процесс расширения выглядит как вертикальная линия A0 — AНt .
Разность значений энтальпии в начальной и конечной точках при изоэнтропном расширении пара представляет собой располагаемый (изоэнтропийный) теплоперепад в сопловом аппарате –hai . В реальных условиях при движении пара через проточную часть турбины неизбежны потери энергии. Процесс расширения пара в этом случае не является изоэнтропным, а точка, характеризующая действительные параметры пара за соплами – АН , смещается вправо по изобаре p1 на величину потерь энергии в сопловом аппарате – qН.
В каналах рабочих лопаток активной турбины расширения пара не происходит, поэтому значения давлений пара на входе в каналы рабочих лопаток и на выходе из них одинаковы. На диаграмме i — s действительные параметры пара на выходе из рабочих лопаток обозначены точкой АР , а процесс, протекающий изобарно в каналах рабочих лопаток – линией AH — AP. Точка АР отстоит от точки АН на величину потерь энергии – qР .
Пар, выходящий из каналов рабочих лопаток, обладает конечной скоростью c2 и уносит с собой некоторую часть кинетической энергии. Эта энергия пара не используется в турбине и называется потерей с выходной скоростью – qA . Действительные параметры пара на выходе из турбины характеризуются точкой Aa .
Весь располагаемый теплоперепад ha , срабатываемый в активной турбине, полностью срабатывается в сопловом аппарате: ha = haH.
Реактивная турбинная ступень
В реактивной турбине (рис. 44) свежий пар с начальными параметрами: p0 , t0 , и абсолютной скоростью c0, подводится к направляющему аппарату (сечение 0). В сужающихся каналах направляющего аппарата происходит расширение пара, в результате чего на выходе из него (сечение 1) скорость потока пара увеличивается до значения c1, а его давление снижается до значения p1. С этой скоростью пар поступает к рабочим лопаткам турбины. В реактивной турбине рабочие лопатки образуют сужающиеся каналы, в результате чего в них происходит дальнейшее расширение пара. При этом на выходе из лопаток (сечение 2) давление пара снижается до величины p2 , а скорость потока пара – до значения c2. При обтекании потоком пара рабочих лопаток и повороте потока на рабочих лопатках возникает сила, направленная от вогнутой поверхности лопатки к выпуклой. Вместе с тем, при расширении и ускорении потока пара, в каналах рабочих лопаток возникает дополнительная реактивная сила, воздействующая на них в том же направлении. Суммарное усилие, действующее на рабочие лопатки, передается валу турбины и создает на нем крутящий момент. Ротор турбины приходит во вращение, при этом рабочие лопатки на среднем диаметре движутся с окружной скоростью u .
Теоретический процесс расширения пара в реактивной турбине протекает изоэнтропно и изображается на диаграмме i — s в виде вертикальной линии Ао – А2t(рис. 44). Линия Ao – A1t на диаграмме изображает теоретический процесс расширения пара в каналах направляющего аппарата. При расширении пара в направляющем аппарате срабатывается теплоперепад – hai. Фактически процесс расширения пара в направляющем аппарате протекает по линии A0 — AH, а точка AI характеризует действительные параметры пара на выходе из направляющего аппарата. Точка AÍ отстоит от теоретической A1t на величину потерь – qÍ . Дальнейший процесс расширения пара в каналах рабочих лопаток начинается из точки AÍ , и при изоэнтропийном расширении выглядит как вертикальная линия AH — Apt . При расширении пара в каналах рабочих лопаток срабатывается теплоперепад had . Фактически процесс расширения пара в каналах рабочих лопаток протекает по линии Ah — Ap , а точка AР характеризует действительные параметры пара за выходной кромкой рабочих лопаток. Точка AР отстоит от теоретической AРt на величину потерь – qÐ . По аналогии с активной турбиной, в реактивной также имеют место потери с выходной скоростью – q , при этом действительные параметры пара за реактивной турбиной описываются состоянием рабочего тела в точке A .
В отличие от активной, в реактивной турбине весь располагаемый теплоперепад – hà срабатывается частично в направляющем аппарате – hàÍ , частично на рабочих лопатках – hàÐ .
Степенью реактивности турбинной ступени – p называется отношение величины изоэнтропийного теплоперепада на рабочих лопатках к сумме располагаемых изоэнтропийных теплоперепадов на направляющих и рабочих лопатках, которая примерно равна располагаемому теплоперепаду всей турбинной ступени:
Таким образом, чем больше степень расширения пара в каналах рабочих лопаток, тем больше степень реактивности турбинной ступени:
P = 0 – для чисто активных турбин (расширение пара происходит только в сопловом (направляющем) аппарате: haD = 0; ha = haI
P = 0,5 – для чисто реактивных степеней (расширение пара происходит в равной степени в направляющем аппарате и рабочих лопатках: haI = haD).
В настоящее время в турбостроении чисто активные ступени не применяются ввиду сложности подвода пара к рабочим лопаткам (пар должен поступать перпендикулярно плоскости лопаток). В действительности активные турбины всегда имеют некоторую степень реактивности – p = 0,03 ÷ 0,2 , что позволяет снизить величину потерь энергии в турбинной ступени. Поэтому когда речь идет об активных и реактивных турбинах, в большей степени имеют ввиду конструктивные отличия в исполнении проточных частей этих типов паровых турбин.
Литература
Судовые энергетические установки. Котлотурбинные энергетические установки. Болдырев О.Н. [2004]
Источник