Простой мощный качер на строчном трансформаторе
Строчные трансформаторы являются одними из самых часто используемых любителями источников высокого напряжения, в основном из-за их простоты и доступности. В каждом CRT телевизоре (большом и тяжелом), который сейчас выбрасывают люди, есть такой трансформатор.
В отличие от многих трансформаторов, которые есть в другой электронике, предназначенных для работы с обычным переменным током 50Гц, и понижающих трансформаторов, строчный трансформатор работает на более высокой частоте, около 16КГц, а иногда и выше. Многие современные строчные трансформаторы выдают постоянный ток. Старые строчные трансформаторы выдавали переменный ток, что позволяло делать с ними что угодно. Строчные трансформаторы переменного тока более мощные, так как в них нет встроенного выпрямителя/умножителя. Строчные трансформаторы постоянного тока легче найти, и именно они рекомендуются для этого проекта. Убедитесь, что ваш строчный трансформатор имеет воздушный зазор. Это значит, что сердечник не является замкнутым кругом, а скорее напоминает букву С, с зазором около миллиметра. Почти во всех современных строчных трансформаторах он есть, поэтому если вы используете современный строчный трансформатор, то это можно не проверять.
В данной схеме используется транзистор 2N3055, который любят и ненавидят строители качеров на строчных трансформаторах. Их любят за их доступность и ненавидят за то, что они обычно воняют. Они склонны сгорать и довольно эффектно, но схема работает с ними невероятно хорошо. Плохую репутацию 2N3055 получил при использовании его в простых одно-транзисторных качерах, в которых на транзисторе присутствует высокое напряжение. В этой схеме добавлено несколько деталей, которые значительно увеличивают её выходную мощность. Теория работы схемы написана ниже.
Схема
В этой схеме очень мало элементов, и все они описаны на этой странице. И многие детали могут быть заменены.
Значение резистора 470 Ом можно поменять. Я использовал резистор на 450 Ом, полученный из трех соединенных последовательно резисторов по 150 Ом. Его значение некритично для работы схемы, но для уменьшения нагрева используйте максимальное значение резистора, при котором схема работает.
Значение нижнего резистора может быть изменено для повышения мощности. Я использую резистор 20 Ом, собранный из двух последовательно соединенных резисторов по 10 Ом. Чем меньше его значение, тем выше температура и меньше время работы схемы.
Конденсатор, находящийся рядом с транзистором(0.47 мкФ) может быть заменен для увеличения мощности. Чем больше его значение, тем больше выходной ток (и температура дуги) и меньше напряжение. Я остановился на конденсаторе 0.47мкФ.
Число витков на катушке обратной связи (катушка с тремя витками) может изменять выходную мощность. Чем больше витков, тем больше сила тока, но не напряжение.
Эта схема отличается от более распространенного одно-транзисторного качера тем, что в неё добавлен диод и конденсатор, который подключается параллельно диоду. Диод защищает транзистор от скачков напряжения обратной полярности, которые могут спалить транзистор. Можно использовать диод другого типа. Я использовал диод GI824, вынутый из телевизора. При выборе диода, обращайте внимание на напряжение и скорость переключения. Чтобы узнать, подходит ли ваш диод, найдите даташит на диод BY500, а потом на ваш диод и сравните параметры. Если ваш диод сопоставим с этим или лучше его, то он подходит.
Конденсатор — это ключ к высокой выходной мощности. Транзистор генерирует частоту, установленную главным образом первичной катушкой и катушкой обратной связи. Конденсатор и первичная обмотка образуют LC цепь. LC цепь работает на определенной частоте, и если настроить схему так, чтобы эта частота была одинаковой с частотой транзистора, выходная мощность значительно увеличиться. Теория LC цепи похожа на теорию катушки Тесла. Эта схема может быть настроена путем изменения емкости конденсатора и количества витков на первичных/вторичных обмотках.
Эта схема требует мощного блока питания, который описан ниже.
Блок питания
Схеме необходим мощный блок питания постоянного тока с выходным напряжением от 12 до 30 вольт и от 1 до желаемого вами количества ампер. Хорошей идеей является сделать регулируемый блок питания, чтобы схема получала именно такое напряжение, какое ей нужно. Если схема собрана неправильно, и используется блок питания вроде этого, схема сгорит. Но регулируемое напряжение необязательно для нормальной работы.
Я использовал трансформатор на 300 Вт от усилителя. У него есть обмотки на 2, 4, 15, 30 и 60 вольт. Схема требует от 12 до 18 вольт для 2N3055. Я часто запускаю схему от 30В, но ненадолго, и транзистор установлен на мощный радиатор. При 15В, схема может работать бесконечно, так как после 30 минут работы, температура не превышала комнатную.
Переменный ток с трансформатора идет на мостовой выпрямитель 400 Вт, установленный на радиаторе, а с него на конденсатор 7800 мкФ 70В, чтобы сгладить напряжение. Используя аналогичные компоненты, вы можете сделать свой блок питания.
Также, в качестве блока питания можно использовать импульсные блоки питания, ИБП. Они есть в зарядных устройствах ноутбуков, ЗУ для автомобильных аккумуляторов и блоках питания компьютеров. Часто у них на выходе 12В и ток до 10А, что подходит для этой схемы.
Сборка
Это очень простая по сборке схема. Моя сборка не является инструкцией и примером, но вы можете повторить её. Всё смонтировано на куске MDF, и элементы расположены свободно, чтобы свести к минимуму помехи от проводов, расположенных рядом и создать условия для охлаждения. Используйте многожильный провод. На многочисленных фотографиях подробно показаны различные элементы схемы, что зачастую полезнее слов.
Одним из наиболее важных моментов в сборке является радиатор транзистора. 2N3055 изготовлен в корпусе ТО-3. Вы можете купить ТО-3 радиаторы, но их немного трудно найти. Я использовал радиатор от компьютерного процессора с отверстиями для его контактов на плоской стороне. Провода от контактов проходят между лопастями. Транзистор прикреплен к радиатору саморезами. Помните, что необходимо использовать термопасту между транзистором и радиатором. Провода, идущие к строчному трансформатору крепятся к нему при помощи крокодильчиков, чтобы можно было менять строчные трансформаторы для экспериментов.
Другим важным моментом являются обмотки строчного трансформатора. Эмальная изоляция медной проволоки это хорошо, но лучше добавить дополнительную изоляцию между сердечником и обмотками. Сердечник может иметь острые края, и если эмаль обдерётся, то может произойти короткое замыкание. Я при намотке катушек снял металлический зажим, скрепляющий половинки трансформатора, намотал катушки, а потом установил его снова. На некоторых трансформаторах такое невозможно, и провод надо будет обматывать вокруг сердечника. Обмотки должны быть намотаны из фазы, что значит, что они мотаются вокруг сердечника в противоположных направлениях. Это показано на фотографиях.
Использование
При использовании этой схемы не проводите никаких манипуляций с подключенными проводами. Также проверяйте температуру транзистора и резисторов во время работы, но делайте это только при отключённом от сети устройстве. Если какой то элемент ощутимо теплый, то не включайте схему, пока он не остынет. Конденсаторы могут сохранять опасный заряд, поэтому будить осторожны.
Кроме того, носите обувь на резиновой подошве при работе с высокими напряжениями и прикасайтесь к включённому устройству только одной рукой. Убедитесь в том, что схема была подключена к земле после работы, чтобы не получить электрический шок. Не пытайтесь настраивать включенную схему.
С этой схемой можно делать многие вещи, например использовать её для питания катушки Тесла, плавления соли или просто забавного времяпровождения с электрическими дугами.
Источник
Строчный трансформатор своими руками
В норме строчный трансформатор применяется только в одном классе устройств – телевизоры с кинескопом. Он отвечает за строчную развертку за счет повышения напряжения на аноде до нескольких тысяч вольт.
Конструктивно он может выполняться совмещенным с выпрямителем или без него. В первом случае он будет называться «Трансформатор Диодно-Каскадный Строчный» или сокращенно ТКДС.
Внешний вид узла может быть, например, таким.
Рис. 1. Внешний вид узла ТКДС
В старых советских телевизорах строчник использовался чаще всего без защитного кожуха (современные модели стараются защитить от вмешательства) и потому он идеально подходит для экспериментов с высокими напряжениями.
На строчнике своими руками можно собрать:
1. Катушку Тесла (плазменный шар);
2. Лестницу Иакова (поднимающиеся вверх горизонтальные разряды между двумя проводниками);
3. Электрошокер (правда, готовое изделие не сможет похвастаться компактными размерами из-за больших габаритов самого трансформатора);
4. Электрическую зажигалку (весьма спорное решение, так как из-за ранее упомянутых габаритов это должно быть скорее стационарное изделие);
5. Генератор высокого напряжения для других нужд.
Изготовить такой трансформатор самостоятельно с нуля – очень затруднительная задача. Другой вопрос – если устройство выйдет из строя по различным причинам.
К основным поломкам строчных трансформаторов можно отнести следующие:
1. Пробой корпуса;
2. Короткое замыкание витков;
3. Обрыв обмотки.
Рис. 3. Типовые поломки строчника
И если обрыв выявляется очень просто (с помощью проверки сопротивления обмоток), то короткое замыкание обнаружить будет гораздо сложнее.
Для проверки на КЗ понадобится осциллограф (необходимо будет сверить входной и выходной сигнал, главное не забыть о включении дополнительных сопротивлений в контуры).
Перемотка строчного трансформатора своими руками
Восстановление в обоих обозначенных случаях производится с помощью перемотки неисправных обмоток.
Для этого используется провод в изоляции (лак) того же диаметра, что и в изначальном варианте.
Наматывание витков необходимо выполнять с особой осторожностью (без чрезмерной натяжки, не повредив изоляционный слой) и аккуратностью (потребуется уложить несколько тысяч витков один к одному, без специальных наматывательных установок это будет сложно сделать своими руками).
Рис. 4. Элементы строчного трансформатора
В качестве изолятора между слоями витков следует использовать бумагу, пропитанную парафином, или аналоги.
Перемотка строчных трансформаторов, упакованных в жесткий корпус, может быть невозможна или сильно затруднена (особенно, если внутри все залито клеем-диэлектриком, компаундом).
Катушка Тесла из строчного трансформатора
Конечно, если вашей задачей не стоит ремонт неисправного телевизора, а скорее наоборот – полезное использование оставшихся от него деталей, то катушка Тесла – это наиболее эффектный и наглядный вариант применения строчного трансформатора.
Итак, схема блокинг-генератора.
Рис. 5. Схема блокинг-генератора
Вместо двенадцативольтовой батареи можно использовать понижающий трансформатор, питающийся от сети переменного тока, с диодным мостом на выходе.
Резисторы лучше всего взять с большим показателем рассеивания тепла – около 10 Вт.
Транзистор — КТ808, КТ805 или аналоги, желательно, чтобы выходная мощность была около 120 Вт. Его требуется установить на теплоотвод большой площади (около 500-1000 см 2 ), так как в работе узел будет сильно греться.
Трансформатор придется немного «доработать». Из имеющихся обмоток оставляется вторичная (намотанная тонким проводом), а первичная снимается (без повреждения сердечника).
На освободившемся месте устанавливается новый изолятор (если старый был поврежден) и наматывается две новые обмотки:
Провод лучше всего использовать в твердой изоляции (не в лаке) диаметром 1,5 — 1,7 мм.
При подаче на вход напряжения 12 В на выходе получается около 9-10 киловольт.
Проверить работоспособность схемы можно очень просто – приблизить выводы обмотки L3 друг к другу. На расстоянии около 5 мм появится устойчивая искра. Она может сохраниться при удалении проводов до 2 см.
Для получения плазменного шара можно использовать обычную лампу накаливания (даже перегоревшую). Один вывод обмотки L3 заземляется, а второй касается цоколя.
При создании лестницы Иакова нужны оба вывода. Они подключаются к расходящимся в разные стороны проводникам (зазор в нижней части – от 5 мм).
При работе с высокими напряжениями всегда стоит позаботиться о технике безопасности!
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник
Что можно сделать из строчного трансформатора
Сегодня уже практически во всех домах появляются плоские ЖК (LDC, TFT) или плазменные цифровые телевизоры. А старые добрые ламповые уезжают на ссылку в дачные дома, перемещаются на балконы, в сараи или просто на свалку.
И только радиолюбители рассматривают ставший ненужным старый телевизор в качестве источника радиодеталей.
Один из ключевых элементов, без которого невозможна работа кинескопа – строчный трансформатор.
Это основная деталь блока развертки строк, которая позволяет формировать очень высокое напряжение (порядка 25-30 тысяч вольт) на аноде кинескопа.
Выглядит этот элемент следующим образом (изображение приведено в качестве примера, бывают различные типы и виды этих трансформаторов).
Рис. 1. Строчный трансформатор
Не выбрасывать же его? При правильном подходе и он сможет найти свое место в быту. На крайний случай он отлично подойдет для опытов с большими напряжениями.
Что можно сделать из строчника
Первое, что приходит в голову на роль приборов с большими напряжениями – плазменные шары (катушки Теслы) и «лестницы Иакова».
Первые выглядят так.
Рис. 2. Плазменный шар
Здесь в качестве шара выступила бюджетная лампа накаливания.
Рис. 3. «Лестницы Иакова»
Однако, помимо «игрушек» на основе строчника можно сделать и более полезные вещи:
1. Зажигалки (для бытовых газовых плит);
2. Ионизаторы воздуха;
3. Генераторы для поджига газонаполненных ламп;
4. Сварочные аппараты (только с полной перемоткой трансформаторов).
Но так как последние изделия не так «эффектны», как первые, то рассмотрим пару примеров с красивыми дугами тока.
Катушка Тесла / плазменный шар из обычной лампы накаливания
Так как вторичная обмотка будет доделываться под свои нужды, то для опытов подойдет только такой строчный трансформатор, у которого есть доступ к обмоткам, например, ТВС90, ТВС-110 и т.п. (из старых советских телевизоров).
Принципиальная схема представлена ниже.
Рис. 4. Принципиальная схема
Вторичную обмотку строчника оставляют «как есть», а первичную перематывают (или наматывают поверх имеющейся, если позволяет конструкция трансформатора). Делают 5 витков толстым проводом диаметром около 2 мм (или несколькими, но так, чтоб общая площадь сечения была не меньше указанной). Лучше всего использовать провод в изоляции.
Обратите внимание, лампа может быть даже нерабочей (со сломанной или перегоревшей спиралью). Так что она фактически может получить вторую жизнь.
Резистор из LC-фильтра может изрядно нагреваться, это нормально. Этот элемент должен быть рассчитан на рассеивание мощности приблизительно в 1-2 Вт.
Еще один слабый элемент схемы – полевой транзистор. Он обязательно должен устанавливаться на теплоотвод причем с использованием термопасты (для лучше проводимости температуры). Площадь теплоотвода следует рассчитывать из показателя в 80 Вт, получаемых от транзистора.
Вот такая красота получается в итоге.
Рис. 5. Плазменный шар
Речь пойдет не об одноименном фильме, или лестнице в небо, а об интересном феномене с электрическими дугами.
Дело в том, что при пробое выделяется энергия (тепло), которая передается окружающему воздуху. Тот в свою очередь, нагреваясь, согласно закону конвекции, начинает подниматься вверх, а вместе с ним поднимаются и разряды пробоев между двумя проводниками (ведь сопротивление теплого воздуха меньше, чем у холодного).
Рис. 6. Принципиальная схема
Сам строчный трансформатор подвергается той же «доработке». Первичная обмотка делается своими руками из толстого медного провода. В качестве «донора» можно использовать, например, ТВС -110Л/6. Наматывается 5 витков.
Усилитель, о котором речь шла в предыдущей схеме для шара, уже интегрирован в ШИМ контроллер UC3845.
Пробой происходит на расстоянии приблизительно 1,5-3 см. Именно на таком расстоянии и следует установить электроды.
На выходе может получиться вот такое чудо.
Рис. 7. Лестница Иакова
На выходе с трансформатора получается напряжение в несколько тысяч вольт с силой тока в 90 мА (этого достаточно для летального исхода при определенных обстоятельствах).
Ни в коем случае не прикасайтесь с токоведущим частям, особенно на выходе строчного трансформатора.
При долгом воздействии дуг стекло лампы может расплавиться, поэтому не прикасайтесь к нему руками на протяжении длительного времени.
При включении аппарата все действия лучше всего совершать одной рукой, предварительно одев сухую обувь на резиновой подошве.
Рекомендуем к данному материалу .
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник