Электрическая изоляция
Электрическая изоляция необходима для предотвращения коротких замыканий и утечек тока между следующими токоведущими частями:
-анодным и катодным устройствами;
-катодным устройством и землей;
Замыкание между катодом (серией) и землей наиболее опасно, т.к. разность потенциалов между ними может достигать 850-1500 В. Утечки тока между катодом и анодом напрямую, минуя междуполюсное пространство, также крайне нежелательны, т.к. приводят к непродуктивному расходованию электроэнергии. Во избежание этого между металлическими конструкциями анодного и катодного узлов помещается изоляционный разрыв. Он выполнен в виде прокладок и втулок из миканита, текстолита, диабаза, паранита или других изоляционных материалов.
Утечки тока и короткие замыкания электролизера с землей могут происходить через катодную ошиновку и через катодный кожух. Поэтому кожух и ошиновка должны быть тщательно изолированы соответственно от фундамента и опор. На электролизерах с днищем кожух изолируется от железобетонных стоек с помощью изоляционных плит.
На электролизерах без днища кожух изолирован от фундамента в соединении верхней и нижней частей анкерных лап. Изоляция состоит из текстолитовой втулки и шайбы из того же материала.
Сопротивление изоляции по отношению к земле всех постоянно находящихся или потенциально возможных оказаться под напряжением частей электролизера должно составлять не менее 0.5 мкОм.
Подключение электродвигателей, установленных на конструкциях электролизера, включая механизмы подъема анода, анодных рам и штор, производят через два последовательно установленных разделительных трансформатора, у которых не заземлена вторичная обмотка. Это исключает попадание постоянного тока в сеть переменного тока, что могло бы вызвать нарушение работы питающих трансформаторов.
В корпусах электролиза предусмотрены также и другие мероприятия по предотвращению замыкания серии на землю. Строительные конструкции в современных корпусах электролиза изготовляют из железобетона и на высоту 3,5 м от пола рабочей площадки покрывают изолирующим слоем бетона толщиной не менее 30 мм. Железобетонные перекрытия полов покрывают асфальтом, а в отдельных точках — плитками из каменного литья. Металлические рифленые плиты, опирающиеся одним концом на катодный кожух и имеющие потенциал электролизера, изолируются в другой точке опоры от строительных конструкций.
Грузоподъемные механизмы мостовых кранов должны иметь изоляцию от моста крана. Механизмы, установленные на тележке, изолируются от её корпуса, а крюк изолируется от обоймы. Каждая ступень изоляции должна иметь сопротивление не менее 1,5 мкОм. Подкрановые пути не изолируются и имеют потенциал земли.
В процессе эксплуатации изоляцию обдувают, очищают от пыли и грязи, периодически замеряют электрическое сопротивление.
Алюминиевый электролизер — это сложный и дорогой агрегат. Продолжительность работы его от пуска до отключения на капитальный ремонт называется сроком службы.
По опубликованным в печати данным, срок службы отдельных алюминиевых электролизеров на предприятиях передовых алюминиевых фирм достигает 10 лет и более. Однако разброс продолжительности срока службы весьма существенный. На многих предприятиях даже 60 мес. непрерывной эксплуатации считается вполне удовлетворительным результатом.
Что же определяет срок службы электролизера в наибольшей степени? Прежде всего, это устойчивость против разрушения футеровки катодной части и катодного кожуха. Условия обжига и пуска электролизёров могут либо усилить, либо ослабить эти тенденции. Другие причины, в том числе поломки механического обо-
рудования, разрушение анодов и др., оказывают несравнимо меньшее влияние на срок службы электролизёров.
Источник
Электрическая изоляция
Электрическая изоляция необходима для предотвращения коротких замыканий и утечек тока между следующими токоведущими частями:
-анодным и катодным устройствами;
-катодным устройством и землей;
Замыкание между катодом (серией) и землей наиболее опасно, т.к. разность потенциалов между ними может достигать
850-1500 В. Утечки тока между катодом и анодом напрямую, минуя междуполюсное пространство, также крайне нежелательны, т.к. приводят к непродуктивному расходованию электроэнергии. Во избежание этого между металлическими конструкциями анодного и катодного узлов помещается изоляционный разрыв. Он выполнен в виде прокладок и втулок из миканита, текстолита, диабаза, паранита или других изоляционных материалов.
Утечки тока и короткие замыкания электролизера с землей могут происходить через катодную ошиновку и через катодный кожух. Поэтому кожух и ошиновка должны быть тщательно изолированы соответственно от фундамента и опор. На электролизерах с днищем кожух изолируется от железобетонных стоек с помощью изоляционных плит.
На электролизерах без днища кожух изолирован от фундамента в соединении верхней и нижней частей анкерных лап. Изоляция состоит из текстолитовой втулки и шайбы из того же материала.
Сопротивление изоляции по отношению к земле всех постоянно находящихся или потенциально возможных оказаться под напряжением частей электролизера должно составлять не менее
Подключение электродвигателей, установленных на конструкциях электролизера, включая механизмы подъема анода, анодных рам и штор, производят через два последовательно установленных разделительных трансформатора, у которых не заземлена вторичная обмотка. Это исключает попадание постоянного тока в сеть переменного тока, что могло бы вызвать нарушение работы питающих трансформаторов.
В корпусах электролиза предусмотрены также и другие мероприятия по предотвращению замыкания серии на землю. Строительные конструкции в современных корпусах электролиза изготовляют из железобетона и на высоту 3,5 м от пола рабочей площадки покрывают изолирующим слоем бетона толщиной не менее 30 мм. Железобетонные перекрытия полов покрывают асфальтом, а в отдельных точках — плитками из каменного литья. Металлические рифленые плиты, опирающиеся одним концом на катодный кожух и имеющие потенциал электролизера, изолируются в другой точке опоры от строительных конструкций.
Грузоподъемные механизмы мостовых кранов должны иметь изоляцию от моста крана. Механизмы, установленные на тележке, изолируются от её корпуса, а крюк изолируется от обоймы. Каждая ступень изоляции должна иметь сопротивление не менее
1,5 мкОм. Подкрановые пути не изолируются и имеют потенциал земли.
В процессе эксплуатации изоляцию обдувают, очищают от пыли и грязи, периодически замеряют электрическое сопротивление.
Дата добавления: 2016-06-18 ; просмотров: 2185 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Изоляция электрических установок
Изоляция электрических установок разделяется на внешнюю и внутреннюю.
К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.
К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).
Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя. Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки.
Особенностью внутренней изоляции электрооборудования является старение, т.е. ухудшение электрических характеристик в процессе эксплуатации. Вследствие диэлектрических потерь изоляция нагревается. Может произойти чрезмерный нагрев изоляции, который приведет к ее тепловому пробою. Под действием частичных разрядов, возникающих в газовых включениях, изоляция разрушается и загрязняется продуктами разложения.
Пробой твердой и комбинированной изоляции — явление необратимое, приводящее к выходу из строя электрооборудования. Жидкая и внутренняя газовая изоляция самовосстанавливается, но ее характеристики ухудшаются. Необходимо постоянно контролировать состояние внутренней изоляции в процессе ее эксплуатации, чтобы выявить развивающийся в ней дефекты и предотвратить аварийный отказ электрооборудования.
Внешняя изоляция электроустановок
При нормальных атмосферных условиях электрическая прочность воздушных промежутков относительно невелика (в однородном поле при межэлектродных расстояниях около 1 см ≤ 30 кВ/см). В большинстве изоляционных конструкций при приложении высокого напряжения создается резконеоднородное электрическое поле. Электрическая прочность в таких полях при расстоянии между электродами 1-2 м составляет приблизительно 5 кВ/см, а при расстояниях 10-20 м снижается до 2,5-1,5 кВ/см. В связи с этим габариты воздушных ЛЭП и РУ при увеличении номинального напряжения быстро возрастают.
Целесообразность использования диэлектрических свойств воздуха в энергетических установках разных классов напряжения объясняется меньшей стоимостью и сравнительной простотой создания изоляции, а также способностью воздушной изоляции полностью восстанавливать электрическую прочность после устранения причины пробоя разрядного промежутка.
Для внешней изоляции характерна зависимость электрической прочности от метеорологических условий (давления p, температуры Т , абсолютной влажности Н воздуха, вида и интенсивности атмосферных осадков), а также от состояния поверхностей изоляторов, т.е. количества и свойства загрязнений на них. В связи с этим воздушные изоляционные промежутки выбирают так, чтобы они имели требуемую электрическую прочность при неблагоприятных сочетаниях давления, температуры и влажности воздуха.
Электрическую прочность вдоль изоляторов наружной установки измеряют в условиях, соответствующих разным механизмам разрядных процессов, а именно, когда поверхности изоляторов чистые и сухие, чистые и смачиваются дождем, загрязнены и увлажнены. Разрядные напряжения, измеренные при указанных состояниях, называю соответственно сухоразрядными, мокроразрядными и грязе- или влагоразрядными.
Основной диэлектрик внешней изоляции — атмосферный воздух — не подвержен старению, т.е. независимо от воздействующих на изоляцию напряжений и режимов работы оборудования его средние характеристики остаются неизменными во времени.
Регулирование электрических полей во внешней изоляции
При резконеоднородных полях во внешней изоляции возможен коронный разряд у электродов с малым радиусом кривизны. Появление короны вызывает дополнительные потери энергии и интенсивные радиопомехи. В связи с этим большое значение имеют меры по уменьшению степени неоднородности электрических полей, которые позволяют ограничить возможность возникновения короны, а также несколько увеличить разрядные напряжения внешней изоляции.
Регулирование электрических полей во внешней изоляции осуществляется с помощью экранов на арматуре изоляторов, которые увеличивают радиус кривизны электродов, что и повышает разрядные напряжения воздушных промежутков. На воздушных ЛЭП высоких классов напряжений используются расщепленные провода.
Внутренняя изоляция электроустановок
Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.
Целесообразность или необходимость применения внутренней изоляции, а не окружающего нас воздуха обусловлена рядом причин. Во-первых, материалы для внутренней изоляции обладают значительно более высокой электрической прочностью (в 5-10 раз и более), что позволяет резко сократить изоляционные расстояния между проводниками и уменьшить габариты оборудования. Это важно с экономической точки зрения. Во-вторых, отдельные элементы внутренней изоляции выполняют функцию механического крепления проводников, жидкие диэлектрики в ряде случает значительно улучшают условия охлаждения всей конструкции.
Элементы внутренней изоляции в высоковольтных конструкциях в процессе эксплуатации подвергаются сильным электрическим, тепловым и механическим воздействиям. Под влиянием этих воздействий диэлектрические свойства изоляции ухудшаются, изоляция “стареет” и утрачивает свою электрическую прочность.
Механические нагрузки опасны для внутренней изоляции тем, что в твердых диэлектриках, входящих в ее состав, могут появиться микротрещины, в которых затем под действие сильного электрического поля возникнут частичные разряды и ускорится старение изоляции.
Особая форма внешнего воздействия на внутреннюю изоляцию обусловлена контактами с окружающей средой и возможностью загрязнения и увлажнения изоляции при нарушении герметичности установки. Увлажнение изоляции ведет к резкому уменьшению сопротивления утечки и росту диэлектрических потерь.
Внутренняя изоляция должна обладать более высоким уровнем электрической прочности, чем внешняя изоляция , т.е. таким уровнем, при котором пробой полностью исключаются в течение всего срока службы.
Необратимость повреждения внутренней изоляции сильно осложняет накопление экспериментальных данных для новых видов внутренней изоляции и для вновь разрабатываемых крупных изоляционных конструкций оборудования высокого и сверхвысокого напряжения. Ведь каждый экземпляр крупной дорогостоящей изоляции можно испытать на пробой только один раз.
Диэлектрические материалы должны также:
обладать хорошими технологическими свойствами, т.е. должны быть пригодными для высокопроизводительных процессов изготовления внутренней изоляции;
удовлетворять экологическим требованиям, т.е. не должны содержать или образовывать в процессе эксплуатации токсичные продукты, а после отработки всего ресурса они должны поддаваться переработке или уничтожению без загрязнения окружающей среды;
не быть дефицитными и иметь такую стоимость, при которой изоляционная конструкция получается экономически целесообразной.
В ряде случаев к указанным выше требованиям могут добавляться и другие, обусловленные спецификой того или иного вида оборудования. Например материалы для силовых конденсаторов должны иметь повышенную диэлектрическую проницаемость, материалы для камер выключателей — высокую стойкость к термоударам и воздействиям электрической дуги.
Длительная практика создания и эксплуатации различного высоковольтного оборудования показывает, что во многих случаях весь комплекс требований наилучшим образом удовлетворяется при использовании в составе внутренней изоляции комбинации из нескольких материалов, дополняющих друг друга и выполняющих несколько различные функции.
Так, только твердые диэлектрические материалы обеспечивают механическую прочность изоляционной конструкции. Обычно они имеют и наиболее высокую электрическую прочность. Детали из твердого диэлектрика, обладающего высокой механической прочностью, могут выполнять функцию механического крепления проводников.
Использование жидких диэлектриков позволяет в ряде случаев значительно улучшить условия охлаждения за счет естественной или принудительной циркуляции изоляционной жидкости.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник